-
=

Pattern Matching Course

ThinkingElixir.com

Download Reference

by Mark Ericksen

This document is intended as a reference resource after course completion.

For the best learning experience and access to the accompanying download materials, enroll in the course.

Copyrights apply to this code and content. It may not be
used to create training material, courses, books, articles,
and the like. Contact me if you are in doubt. | make no
guarantees that this code is fit for any purpose. Visit
https://thinkingelixir.com/available-courses/pattern-
matching/ for course information.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://thinkingelixir.com
https://thinkingelixir.com/available-courses/pattern-matching/
https://hexdocs.pm/elixir/Map.html#put/3

Install Elixir Page 2 of 74

Install Elixir

In order to start /earning Elixir, you need the ability to p/ay with Elixir. Please make sure you have Elixir installed on your system
before you continue.

Read here for the Official documentation for installing Elixir.

Follow my guide to installing Elixir using asdf-vm.

Asdf is a version manager tool on MacOS and Linux that installs and manages multiple versions of Elixir and Erlang. | recommend
this to ensure you have compatible versions of Elixir and Erlang to give you the best development experience.

With Elixir installed your machine, from a command terminal, you should be able to execute the -v or “version” command to see
that it is ready to go.

$ elixir -v
Erlang/OTP 22 [erts-10.5.5] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]

Elixir 1.9.4 (compiled with Erlang/OTP 22)

The exact version isn’'t important. Your's will likely be newer than this one which is awesome!

Need a code editor?

Do you need an editor to use for writing your new Elixir code? If you don’t already have an editor in mind, check out this post to
get you started!

Elixir's Interactive Shell

Elixir has an interactive shell called IEx. This is a powerful and very helpful tool not only during the learning process, but when
working with both development and live systems.

IEx allows to you write Elixir statements, execute them, and get the results. It has other great features like auto-completing
commands (using the TAB key), displaying help and type information.

We Learn By Doing

The most effective way to /earn Elixir is to start doing Elixir. The IEx shell gives you an easy on-ramp to getting started. With Elixir
installed on your system, you are ready to go.

In the coming sections, | really encourage you to p/ay with the code as you read and learn about it. The code examples are
designed to be easy to copy & paste into a terminal to make it that much easier.

Open a terminal on your computer. The command to start IEx is... iex.

$ dex
Erlang/OTP 21 [erts-10.0.6] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]

Interactive Elixir (1.8.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

Before we start to play, you need to know how to get out of your new play area. To exit IEx, hit CTRL+C and you’ll see the BREAK
menu:

iex(1)>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (1l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

If you press c, you will remain in IEx. If you press a, it will abort the shell and exit. The most common way to exit is to use
CTRL+C again. Start an IEx shell again, now hit CTRL+C, CTRL+C . That's right, two times in a row. That’s the easiest way to exit
an IEx shell. Commands like quit and exit don’t exist.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://elixir-lang.org/install.html
https://thinkingelixir.com/install-elixir-using-asdf/
https://thinkingelixir.com/elixir-in-vs-code/

Install Elixir Page 3 of 74

Play Time!

Now that you know how to start and exit an IEx shell, it's time to start playing. Here are some simple commands you can try.

jex(1)> 1 + 1

2

iex(2)> b = 12
12

iex(3)> b

12

iex(4)> b + 10
22

iex(5)>

Notice that the iex prompt includes a line number. It increments automatically. You don’t have to worry about that.

Line Continuations

When you write an expression and use an opening character that requires a closing one, it can carry across lines.

iex(1)> "abcd
Lo (1)> efg”
"abcd\nefg"

Notice that it included the \n new-line character inside the string. Also note that the ...(1)> was the continuation line.

Sometimes this happens by accident. You accidentally forget to include a matching closing character. In this example, | “forgot” to
include the closing parenthesis. Eventually | figure it out, add the closing parenthesis and the function is evaluated.

iex(1)> String.downcase("HELLO WORLD"
(1)

(1)

(1))

"hello world"

Auto-Complete in IEX

As mentioned, auto-complete is very handy in IEx. Time to play with it. Let's explore that String module that was just used to
downcase some text. What else can it do? To find out, type Str and hit your TAB key. You should see something like this:

iex(2)> Str
Stream String StringIO

It shows modules that match the str prefix. Add an i and it knows you want “String” over “Stream”. Hit TAB and let it complete.
Now add a . and hit TAB again to see all the modules and functions available under the String module. It should look something
like this:

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Install Elixir

Page 4 of 74

jex(2)> String.

Break Casing Chars

Tokenizer Unicode at/2
bag_distance/2 capitalize/1 capitalize/2
chunk/2 codepoints/1 contains?/2
downcase/1 downcase/2 duplicate/2
ends_with?/2 equivalent?/2 first/1
graphemes/1 jaro_distance/2 last/1

length/1 match?/2 myers_difference/2

next_codepoint/1
normalize/2

next_grapheme/1
pad_leading/2

next_grapheme_size/1
pad_leading/3

pad_trailing/2 pad_trailing/3 printable?/1
printable?/2 replace/3 replace/4
replace_leading/3 replace_prefix/3 replace_suffix/3
replace_trailing/3 reverse/1 slice/2
slice/3 split/1 split/2
split/3 split_at/2 splitter/2
splitter/3 starts_with?/2 to_atom/1
to_charlist/1 to_existing_atom/1 to_float/1
to_integer/1 to_integer/2 trim/1

trim/2 trim_leading/1 trim_leading/2
trim_trailing/1 trim_trailing/2 upcase/1
upcase/2 valid?/1

jex(2)> String.

| see “length/1"”. That seems obvious enough. | expect it will return the length of a string. Let’s try it.

iex(2)> String.length("elixir")

6

It returned the number of characters in the string. Note: the /1 means the function takes 1 argument.

Help in IEx

As mentioned before, IEx has the ability to get “help” on modules, functions and more. Let’s see the help for String.length . The
help is displayed by putting the h command in front of a module name or a module and function name together as in the

following example:

iex(3)> h String.length

length(t()) :: non_neg_integer()

String.Unicode.length/1

Returns the number of Unicode graphemes in a UTF-8 string.

You will notice that this help text is the exact same as what is in the online documentation. String.length/1 documentation. This is
no coincidence. The documentation is generated from the help text included in the code. Likewise, your code always has the
documentation for the exact version of Elixir that you are running. That’s pretty cool! Still works when you are on an airplane.

Command History

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/String.html#length/1

Basic Types Overview Page 5 of 74

Being able to press the UP arrow key and bring back the last command can be really helpful. When you start IEx, you can pass in
a command to make that available like this:

$ jiex --erl "-kernel shell_history enabled"

This command is passing an Erlang configuration option through IEx using --erl . The command will enable shell history. Now,
when in an IEx shell, pressing the UP arrow brings back the previous command. Hitting the UP arrow repeatedly lets you keep
going back through the command history.

Entering that command every time you start IEx isn’t fun. You can set the ERL_AFLAGS environment variable on your system
through your shell’s profile file to make it always available.

On Unix-like / Bash: (ie: MacOS/Linux)
export ERL_AFLAGS="-kernel shell_history enabled"

On Windows:

export ERL_AFLAGS="-kernel shell_history enabled"
On Windows 10 / PowerShell:

Senv:ERL_AFLAGS = "-kernel shell_history enabled"

Don’t worry about doing this right now if it's not important to you at the moment. Just know that it can be solved and you have the
solution right here when you are ready for it.

Ready, Set, Go!

With Elixir installed and the ability to play in the interactive IEx shell, you are ready to go! Remember that p/ayis fun. So now it's
time to have fun!

Basic Types Overview

There aren’t that many basic data types in Elixir. These are the ones we’ll cover here.

atom
boolean
nil
integer
float
string

I~)
@ Thinking Tip: Learn by doing

Remember, we learn best by doing. Open an IEx shell and play with each of these types as we
cover them.

NS 2

Atom

An atom is a literal, a constant with name. It is a constant whose name is its value. Atoms are very useful in pattern matching and
are used for more than you might expect in Elixir.

Examples of Atoms:

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Basic Types Overview Page 6 of 74

tmy_atom
ttesting
customer_type

An atom begins with a colon and typically is all lowercase letters using an underscore to separate words.

If you need an atom to contain spaces or special characters that otherwise wouldn’t be valid, you can express it as a string with
the colon in front.

:"I'm still an atom"

However, writing atoms this way is unusual and only done when needed for specific exceptional instances.

An Atom in Elixir is similar to a symbol/in Ruby or an enumeration in C/C++. Atoms are stored in the “atom table”. All references
to an atom like “ :ok " are shared and actually all point to the same atom table entry.

Functions for working with an Atom can be found in the Atom module.

Preventing Denial-of-Service

Atoms are not garbage collected. The important thing to learn from this is you should not allow user provided content to become
an atom at run-time in your system. Converting unchecked user data to an atom can expose your system to a Denial of Service
(DOS) attack. The attack works like this, a malicious actor causes your system to repeatedly create unique atoms until it
consumes all of the available resources on your machine ultimately causing it to crash. It isn’t a security flaw, it isn’t a “break-in”,
but it can be abused to cause your system to crash.

You can allow user input to become an atom using the String.to_existing_atom/1 . If you already have an atom defined in the
system, it accepts the conversion. If you try to convert to something new, it raises an exception blocking the operation.

iex(1)> String.to_existing_atom("ok")
:ok

iex(2)> String.to_existing_atom("whaaaat")
** (ArgumentError) argument error
rerlang.binary_to_existing_atom("whaaaat", :utf8)

Boolean

Examples are: true and false .

The boolean values are actually implemented as special reserved atoms.

false == :false
#=> true

true == :itrue
#=> true

Nil
Nil represents the absence of a value. It is like null in Javascript and many other languages.

Interestingly, nil is also implemented as a reserved atom.

nil == :nil
#=> true

In evaluations, nil behaves like false .

if nil || true, do: "True!", else: "False."
#=> "True!"

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/Atom.html
https://en.wikipedia.org/wiki/Denial_of_Service_attack
https://hexdocs.pm/elixir/String.html#to_existing_atom/1

Basic Types Overview Page 7 of 74

Integer

Represents positive and negative whole numbers. Including 0.
Functions for working with an Integer can be found in the Integer module.

Examples:
-10, 0, 1000

Integers can be arbitrarily large. It uses as much data is needed to contain it.
99

Can be represent as Hex and more.

OXFF
#=> 255

Integers can use _ as a grouping separator. This is functionally ignored but helps with readability.

1_000_000
#=> 1000000

Float

Represents floating point numbers.

Examples:
-12.4, 0.5, 100.67, 83.33333333333

Functions for working with a Float can be found in the Float module.

Floats don’t support a “Decimal” type for explicit levels of precision. As such, it results in typical floating point rounding issues.

0.8 x 3
#=> 2.4000000000000004

This is expected with floating point math. For further explanation, see these resources:

e http://0.30000000000000004.com
e What Every Programmer Should Know About Floating-Point Arithmetic

If you need to represent fixed decimal values for something like money, using a Float may not be the most appropriate choice. For
example, it may work better to use an integer that represents cents (instead of whole dollars).

Another option is to use a community package called Decimal that provides arbitrary decimal precision.
Scientific Notation
Floats are frequently displayed in their scientific notation. This may not be what you expect or want.

1200.0
#=> 1.2e3

Note that when working in IEx, it converts the data to a string for display in the shell. This is the same display as Float.to_string/1.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/Integer.html
https://hexdocs.pm/elixir/Float.html
http://0.30000000000000004.com/
https://floating-point-gui.de/
https://hex.pm/packages/decimal
https://hexdocs.pm/elixir/Float.html#to_string/1

Basic Types Overview Page 8 of 74

Float.to_string(1200.0)
#=> "1,2e3"

If you need to convert a float to a string with explicit decimal precision, use the built-in Erlang function float_to_binary . In Elixir,
you can use any Erlang function. In this example, the function we want is declared in the erlang module. To call it, use an atom as
the module name like this:

rerlang.float_to_binary(1200.0, decimals: 2)
#=> "1200.00"

String

Strings are encoded in UTF-8. A string uses the double quote character " . Single quoted text is not a string, that’s a charlist and
behaves differently.

"The quick brown fox"

The String module has a number of functions for working with them.

String.upcase("hello world")
#=> "HELLO WORLD"

Concatenation

Elixir strings can be concatenated using the <> operator.

"one" <> " two"
#=> "one two"

text = "Hey"

text <> " friends!"
#=> "Hey friends!"

Interpolation

Elixir strings support interpolation using the #{...} characters embedded in a string.

name = "Tom"
"Greetings #{name}!"
#=> "Greetings Tom!"

Strings are Binary

UTF-8 strings didn’t exist in Erlang before Elixir. Because of this, many Erlang functions that take a string don’t take an Elixir
string. Erlang sees an Elixir string as a binary type.

is_binary("a string")
#=> true

In Erlang, functions often expect a charlist .

Charlist

Mostly used for interoperability with Erlang. It is just a list of code points and is created with single quotes.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

http://erlang.org/doc/man/erlang.html#float_to_binary-2
https://hexdocs.pm/elixir/String.html

List Page 9 of 74

'this 1is a charlist'
#=> 'this is a charlist'

is_list('testing')

#=> true

A charlist can be converted to a string and vise versa using these functions:

e Kernel.to_string/1
e Kernel.to_charlist/1

“Kernel” is Elixir's default environment. It even defines basic math operators like + and - . Because it is so essential to Elixir, the
Kernel module is always included for you. You can just use the functions to_string/1 and to_charlist/1 to convert between the
types without needing to specify the “Kernel” module explicitly.

to_string('hello world'")
#=> "hello world"

to_charlist("hello world")
#=> 'hello world'

Modules to Manipulate

All of these types are primitives. They are “data”. They are not objects with functions attached to them. There are no “objects” in
Elixir. There is only “data” and “functions”. Modules are a collection or a container for functions.

By convention, when you want to perform some function on a piece of data, you use the type’s module for doing that. This is
particularly the case for Atom, Integer, Float, and String.

List

How it works

A List uses the [and] characters to contain the elements of the list separated by commas. It looks like this:
my_list = [1, 2, 3, 4, 5]

This looks like an Array in other languages. However, a List doesn't act like an Array.

A list in Elixir (and other functional programming languages) is actually a recursive data structure. Internally implemented as a
linked list.

When you realize an Elixir list is an immutable linked list, it's behavior makes sense and how you use it becomes clear.

my_list=[1 {2 {34 }H{5]

my_list is “bound” to the list. The variable isn’t “assigned” the value of the list, it is said to be “bound”. Variables in Elixir are all
“bound” to their values. You can think of “bound” as meaning “is pointing to”. So my_list is pointing to a specific elementin a
linked list. Each element points to the next element in the list and separately points to the value for the element.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/Kernel.html#to_string/1
https://hexdocs.pm/elixir/Kernel.html#to_charlist/1
https://hexdocs.pm/elixir/Kernel.html

List Page 10 of 74

When you realize an Elixir list is an immutable linked
list, it's behavior makes sense and how you use it
becomes clear.

In many languages, it is common to add more items to the end of an Array as it is built up. With an immutable List, we can’t add
items to the end as that would be affecting other variables that are bound to some element earlier in the list.

(123145

If | really do want to add to the end of the list, | can, but a whole new list is created with that value at the end. When a list is very
large, this becomes an expensive operation. Two lists can be concatenated together using the ++ operator.

FRFREREREITE

my_Tlist ++ [6]
#=> [1, 2, 3, 4, 5, 6]

Adding to the front of the List, or the “head” is very cheap. It doesn’t alter other variables that are already bound to some element
in the List.

vow ist=[8) {1]{2143] {445]

my_list

This makes it very efficient both in speed and memory consumption. To efficiently add to the front of a list, you use the | pipe
character to join the new element and the existing list together.

[0 | my_list]
#=> [0, 1, 2, 3, 4, 5]

It can be cheaper and faster to build up a large list in reverse, adding to the “head” rather than re-building the whole list with each
new addition. Then, once built, perform a single “reverse” of the whole list using Enum.reverse/1.

U EREL ERELLEY

Enum.reverse([6, 5, 4, 3, 2, 1])
#=> [1, 2, 3, 4, 5, 6]

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/Enum.html#reverse/1

List

Page 11 of 74

\\

/(

@ Thinking Tip: Immutable Data Insight

it with a list.

Thinking about a list as a “linked list” data structure where it's made up of pointers to the actual
data helps to understand how immutable data can work and be so memory efficient. The same
kind of thing is happening with the other data structures, but | think it's easiest to start imagining

Working with immutable data may be a different experience for you. It probably feels
uncomfortable. However, it is what enables concurrency and immutable data removes a whole
category of state related bugs. If it is uncomfortable now, just know that understanding and
embracing it will help make you a better programmer. And you’ll end up loving it!

NS

See for yourself!

| described how adding to the front of a list is faster than adding to the end. The best way to really “get” this is to see and feel it

for yourself.

Below | have 2 one-liner functions that exaggerate the differences so you can really feel it. Don’t worry about understanding the
details of the code. Conceptually they both build a list of 100,000 items. They both add one number at a time to the list starting

with the number 1 and going up to 100,000.

The difference is one function adds the item to the end of the list using list concatenation. That's the code that says acc + [n]. It

means list_so_far ++ [next_number] .

Run this line in IEx and expect it to take some time.

Enum.reduce(1..100_000, [], fn(n, acc) -> acc ++ [n] end)

Did you see how long that took?

Running Observer (it's like an activity monitor built in to the BEAM), you can see the load it put on the machine.

File View Nodes Log Help

System Load Charts | Memory Allocators = Applications | Processes | Ports | Table Viewer | Trace Overview

Scheduler utilization (%)

100

50 1

o - ~ : /I‘L

ok
60s 50s 40s 30s 20s 10s 0s
Scheduler: 1 2 3 Dirty cpu: 1 2 3 (dotted)

Memory Usage (MB) 10 Usage (B)
50 40
11} .I_ I
YTULJY
I i
) . o | f‘r\") I]]Inliflulllll‘} Ifﬂl 20
il e —— ‘
= |
| |
0 0 i
60s 50s 40s 30s 20s 10s 0s 60s 50s 40s 30s 20s 10s 0s
Total Processes Atom Input Output

Observer showing system impact of 100,000 inefficient list operations.

ThinkingElixir.com - Pattern Matching Reference

(C) 2019 Mark Ericksen

List Page 12 of 74

The top chart shows the CPU impact and how much time it took. The bottom left chart shows the RAM impact. The saw-tooth line is
from garbage collection being done.

Why is it so inefficient? With every item added, it re-creates the entire /ist so no other references to the list are affected.

Let’s try it again with code adds items to the front of the list. The important part of the code is the [n|acc] which means
[next_number | list_so_far] . It adds the single item to the front of the list.

Run this line in IEx and see how long it takes to return.

Enum.reduce(1..100_000, [], fn(n, acc) -> [n | acc] end)

Did that feel different? Let’s see the system impact of the code.

&t

File View Nodes Log Help

System | Load Charts | Memory Allocators | Applications | Processes | Ports | Table Viewer = Trace Overview

Scheduler utilization (%)
30

15

60s 50s 40s 30s 20s 10s Os
Scheduler: 1 2 3 Dirty cpu: 1 2 3 (dotted)

Memory Usage (MB) 10 Usage (B)
40 200
20 100 |
an n
L e —— I
l Il
0 0 |
60s 50s 40s 30s 20s 10s 0s B60s 50s 40s 30s 20s 10s Os
Total Processes Atom Input Output

Notice the chart scale is reduced and that the CPU has one spike that stayed below 30%. The RAM also only slightly bumped.

Why is it so much more efficient? As the list is being built, it never gets re-created. Any other variable references to the list made
during this operation won’t be affected by adding more items to the front. So it can just keep adding items to the front efficiently.

Should | only ever add to the front?

You might see this and ask, “should | only ever add items to the front of a list?” The answer is “no”. This example is specially
designed to exaggerate the behavior. When building a list of 10, 100, or even 1,000 items, adding to the end of the list probably
won’t even be noticed. However, it is important when working with much larger lists.

The point here is to understand how lists work in Elixir so you have the right mental model. Lists are internally implemented as
linked list, not an array. You can’t treat them like an array.

List Contents

Lists don’t just contain integers. Lists can contain any data type and can contain different types from one element to the next.

A list’s contents are ordered. They remain in the order they are declared.

[1, "Hello", 42.0, true, nil]

Experiment with Lists

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Tuple Page 13 of 74

Take some time to experiment with lists in IEx. Try concatenating lists together with ++ , you can also remove elements from a
list using -- . Try adding to the front of a list using the | pipe separator. Try tweaking the list function examples to use different
numbers. Experimentation is playing! Have fun playing!

Here are a few key points about the tuple data type.

e Atuple is a collection type. It is a structure that contains a fixed number of things.

e Atuple’s elements are ordered and fixed in size.

e A tuple does NOT mean TWO. Tuples can have many elements. However, it is common to see a tuple with only two
elements.

e A common usage in Elixir is to return multiple result values from a function in a tuple.

The following example represent common function return values. Each tuple contains 2 pieces of information or data.

{:0k, result}
{:error, reason}

The first piece of information is an atom (ie: :ok or :error) that tells if the operation succeeded or not. If we got an :ok , we know
it succeeded and the next piece of data is the result of the operation. If we got the atom :error then we know the operation failed
and the reason may tell us why.

Another example of using a tuple to return multiple pieces of information at once might be the result of a function that splits a list
of integers into odd and even sets. Imagine that a function named split_odd_even/1 is available to us. This function leaves the
original list unmodified (immutable) and returns the two different result sets through a tuple. It could look like this:

{odd_results, even_results} = split_odd_even([1, 2, 7, 12, 15])

odd_results
#=> [1, 7, 15]

even_results
#=> [2, 12]

Here is another tuple example that contains multiple pieces of data. In this example the tuple contains a person’s name and age:
{"Howard", 32}
Using the Kernel.elem/2 function, you can extract the value of an element from a tuple.

tuple = {:foo, :bar, 3}
elem(tuple, 1)
#=> :bar

elem({:foo, :bar}, 2)

#=> *x*x (ArgumentError) argument error

A cleaner and more natural way to do this is with “pattern matching” which isn’t covered here.

You can replace an element using Kernel.put_elem/3. Remember, Elixir isn’t changing the tuple, internally it is creating a new tuple
where the elements point back to the previous tuple’s values, with the exception of the new change.

tuple = {:foo, :bar, 3}
put_elem(tuple, 2, :baz)
#=> {:baz, :bar, :baz}

You can see that the original tuple variable has not been modified:

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/Kernel.html#elem/2
https://hexdocs.pm/elixir/Kernel.html#put_elem/3

Map Page 14 of 74

tuple
#=> {:foo, :bar, 3}

Tuples are best for a fixed number of elements. If you need a dynamic container that preserves order, use a List instead.

Map

A map is a collection data structure. An entry is made up of a key and a value . As noted in the Map documentation:

Maps are the “go to” key-value data structure in Elixir.

https://hexdocs.pm/elixir/Map.html

The “key” of a map can be anything. However, it is most commonly a string or an atom.

When you receive a web POST with data, it will be represented as a Map with string keys. When you prepare a response structure
for JSON, it will likely end up as Map with atom keys.

Let’s look at each.

Make sure to try these things out in an IEx session.

String-Key Version

%{"name" => "Howard", "age" => 30}
#=> %{"age" => 30, "name" => "Howard"}

You may notice that the keys do not preserve order.

Atom-Key Version

%{name: "Howard", age: 30}
#=> %{age: 30, name: "Howard"}

An atom key can also be written using the arrow syntax. It is shortened for you.

%{:name => "Howard", :age => 30}
#=> %{age: 30, name: "Howard"}

Other Key Types

A map can have any data structure as a key and a value.

The key can be any data type.

%{
1 => "Integer One",
1.5 => "Float!",
true => "boolean key",
{:name, "Daniel"} => "a tuple",
%{map_as_key: true} => "gracious!",
[1, 2, 3] => "a list"

Using any data type as a key may not be very practical, but it can come in handy. Just know that this ability exists.

Again, the most common keys are atoms and strings.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/Map.html

Map Page 15 of 74

Nested Values

It is common to have nested values. Take this for example:

order = %{
id: 1,
customer: %{id: 99, name: "Widgets, Inc."},
dtem: %{
id: "item-11332",
name: "Sprocket #12",
price: 12.70,
quantity: 1
},
discounts: [%{code: "SUMMER19"}],
total: 10.00

The customer, item, and discounts keys are atoms. The value is another data structure.

Accessing Values in a Map

There are a lot of ways to access the values and structure of a map. Here we’ll introduce only a few of the basics.

Map.get/3

We can access elements of the map using the Map.get/3 function. We provide it the map and the key we want the value for. The
third argument is the default value to return if the key isn’t found in the map. It defaults to nil .

Map.get(order, :id)
#=> 1

Requesting a missing key from the map, we can give the default value we want back.

Map.get(order, :missing_key)
#=> nil

Map.get(order, :missing_key, "Hey! It's missing!")
#=> "Hey! It's missing!"

Access Behaviour

Another way to access the value of a key is to use the access operator [].

order[:1id]
#=> 1

order[:missing_key]
#=> nil

When the key is an atom, it supports accessing it directly like this:

order.id
#=> 1

This will now cause an error if trying to access a missing key.

order.missing_key
#=> ** (KeyError) key :missing_key not found in:

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/Map.html#get/3

Map Page 16 of 74

Kernel.get in/2

Another option is Kernel.get_in/2. It supports a handy way of returning data nested deeper in the structure.

get_in(order, [:customer, :name])
#=> "Widgets, Inc."

Changing an Immutable Map

Data structures in Elixir are immutable. Changing an element in a map returns a new map with the desired change. Internally, it
is managed by pointers where everything points to the values of the old data structure with the exception of the latest change.

You don’t need to worry about the internals though. You can just know that it is efficient memory management and it ensures
“immutable” data.

There are several ways to alter a map.

Map.put/3

The Map.put/3 function can add new keys to a map and change existing ones.

person = %{
name: "Sally Green",
age: 35,
position: "Manager",
division: "Engineering"

}

Say we want to add another key to track on the person . Now we want to track the corporate region she works in.

Map.put(person, :region, "west-1")
#=> %{

#=> age: 35,

division: "Engineering",
name: "Sally Green",
position: "Manager",

region: "west-1"

H OH B H
1
V V. V VvV VvV

If we look at the person again, we see it is unchanged! It doesn’t contain the newly added region.

person
#=> %{

#=> age: 35,

#=> division: "Engineering",

#=> name: "Sally Green",
#=> position: "Manager"
#=> }

We didn’t modify the original person map. It added the key to a new map where the new map’s other keys all pointed back to the
original person map.

If we want to keep the change, we can re-bind the person variable to point to the newly updated map. Alternatively we can
create a new variable to bind to the altered map.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/Kernel.html#get_in/2
https://hexdocs.pm/elixir/Map.html#put/3

Map Page 17 of 74

person = Map.put(person, :region, "west-1")
#=> %{

#=> age: 35,

division: "Engineering",

name: "Sally Green",

position: "Manager",

region: "west-1"

o o3 oW
i
vV V V V V

Now the person variable points to the updated map.

person
#=> %{

#=> age: 35,

division: "Engineering",
name: "Sally Green",
position: "Manager",
region: "west-1"

HH OH B H
1
V V. V VvV VvV

=>}
G N\
@ Thinking Tip: Re-Binding
In Elixir, we don’t call it “variable assignment” because we aren’t “assigning” a value to a
variable. We are “binding” a variable to a value. When you think of how it's working internally
with pointers, this makes more sense.
Elixir allows us to re-bind a variable. Erlang and other functional programming languages don’t
even allow that. Instead, I'd have to create a new variable for every change. Elixir makes this
easier and it can deceptively feel like how it works in other languages.
NS)

Kernel.put in/3

The Kernel.put_in/3 function lets us add new keys and update existing ones in a deeply nested map.

Updating a value deeper inside a nested map can be hairy when using Map.put/3 because you have to update the map at each
level. Instead Kernel.put_in/3 gives us the syntax we need to make a deeper change.

Remember that we don’t need to use the module Kernel as that is imported for us.

In this example our data is nested 3 levels deep and we want to update the :value atthe deepest level.

data = %{
name: "level 1",
value: 100,

data_1: %{
name: "level 2",
value: 200,
data_2: %{
name: "level 3",
value: 300

Using Kernel.put_in/3 works well. The second argument is a list of the keys to follow that get us where we want to go. The last
argument is the new value to set for the last key in our list.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/Kernel.html#put_in/3

Introducing Modules and Functions Page 18 of 74

put_in(data, [:data_l, :data_2, :value], 3000)
#=> %{

#=> data_1: %{

data_2: %{name: "level 3", value: 3000},
name: "level 2",

value: 200

name: "level 1",
value: 100

HOoH H OH H K
1

>
>
>
>3,
>
>
>

This updated the value at the deepest level and returned a new map with the desired change. Data in Elixir is immutable. Our
original data variable is still bound to the original map with the unchanged value.

Working with immutable data takes some time to get used to, but it is an important foundation for so many benefits that we want!
The benefits are worth the initial discomfort we feel with it.

Special Update Syntax

Maps support a special update syntax that can update existing atom keys only.

%{person | position: "VP of Engineering", age: 36}
#=> %{

#=> age: 36,

division: "Engineering",

name: "Sally Green",

position: "VP of Engineering",

region: "west-1"

o
il
vV V V V V

This can set multiple values at one time. This update recognized Sally’s promotion and that she is now older. Likewise, it doesn’t
update the person unless we explicitly re-bind the person variable to the updated map.

person = %{person | position: "VP of Engineering", age: 36}
This only works for atom keys that already exist on the map. It will error when attempting to set a key that doesn’t exist.

%{person | salary: 100_000}
#=> ** (KeyError) key :salary not found in:

Try performing some of your own updates in an IEx session. What do you have to do to keep the changes?

More Resources

For more detailed information on the built-in functionality for working with maps, refer to these resources:

Map module

Access module
Kernel.get_in/2
Kernel.pop_in/2
Kernel.put_in/3
Kernel.get_and_update_in/3

Introducing Modules and Functions

A quick overview and introduction to an Elixir module and function is needed.

In functional programming, it is just “functions” and “data”. Functions are the instructions of how to transform some given data.
Modules are containers for functions that also provide a namespace.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/Map.html
https://hexdocs.pm/elixir/Access.html
https://hexdocs.pm/elixir/Kernel.html#get_in/2
https://hexdocs.pm/elixir/Kernel.html#pop_in/2
https://hexdocs.pm/elixir/Kernel.html#put_in/3
https://hexdocs.pm/elixir/Kernel.html#get_and_update_in/3
https://hexdocs.pm/elixir/Kernel.html#get_and_update_in/3
https://hexdocs.pm/elixir/Kernel.html#get_and_update_in/3

Introducing Modules and Functions Page 19 of 74

Modules

Modules serve both as a container for functions and as a namespace.

A module is defined using the defmodule command and the name starts with an uppercase letter.

defmodule MyFoo do
def foo do
"Hello!"

end

end

In order to execute the foo function, | need to provide the namespace to the function. You can copy/paste the above module code
into IEx to play with it.

MyFoo. foo
#=> "Hello!"

Parenthesis are optional in Elixir. The above could also be written as MyFoo.foo() . If there is ambiguity about the syntax then the
parenthesis are required by compiler.

Functions in IEx

Functions must be defined inside of a module. This makes playing with them less convenient in IEx. Typing and editing module
code into IEx is awkward. Here are three ways you can play with modules at this stage:

1. Edit the code in a text file and paste it into IEx
2. Edit the code in a text file and execute the file as a script

3. Start a “mix” project

The first one you can do easily enough on your own. Editing the code and pasting it into IEx will “re-write” the module.

Running an Elixir Script

The second option is to create an Elixir script file. You can execute the script from the command line. This makes it easier to work
with slightly more complex code samples.

i~)
@ Thinking Tip

Read “Running an Elixir File as a Script” for a walk-through of how to do it. It includes
explanations of what's happening and how to recognize when you’ve grown out of a script.

NS 2

Creating a Simple Mix Project

The third option is to create a simple Elixir “mix” project. | recommend this approach for the following reasons:

Simple to create

A mix project is very small

Easily supports organizing your code into multiple files
Starts you off with a testing framework setup

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://thinkingelixir.com/2019-04-running-an-elixir-file-as-a-script

Introducing Modules and Functions Page 20 of 74

7)

@ Thinking Tip

Read “Creating Your First Mix Project” for a walk-through of how to do it. It includes tips on
working with your code in a mix project.

NS 2

For more details on how to do this, please read the post “ Creating Your First Mix Project” which explains it in more detail.

Function “Arity”

In Elixir we talk about functions and their “ arity“. Meaning the number of arguments that a function takes.

Let’s add two functions called greeting to our MyFoo module. You can copy/paste this into IEx.

defmodule MyFoo do

def foo do
"Hello!"
end

def greeting(name) do
"Hello #{name}!"
end

def greeting(name, extra_greeting) do
"Greetings #{name}! #{extra_greeting}"

end

end

In IEX, | can use auto-completion to see the functions available on the module | just defined. After MyFoo. press the TAB key to
see the auto-complete options.

iex> MyFoo.
foo/0 greeting/1 greeting/2
iex> MyFoo.

It shows the two different greeting functions. One with the /1 and the other with a /2 to identify how many arguments they
take.

Function Return Values

Elixir uses an “implicit return” for functions. You don’t explicitly say “return” this value. Elixir returns the value of the last
expression as the function result.

In the “ MyFoo.foo ” example, the return is the string "Hello!" because it was the last value expressed in the function. There is no
way to not return a value. Given that this is Functional Programming, every function returns a value! You may choose to ignore it,
but it will return something.

In this example, let’s create a function that does nothing and returns nothing. What happens when we call it?
defmodule MyFoo do
def do_nothing do
end
end

MyFoo.do_nothing
#=> nil

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://thinkingelixir.com/2019-04-creating-your-first-mix-project
https://thinkingelixir.com/2019-04-creating-your-first-mix-project
https://en.wikipedia.org/wiki/Arity

Introducing Modules and Functions Page 21 of 74

It has to return something so it returns nil .

No Early Return?

Given that a function always returns something and the last thing the function does is used as the return value, some people ask,
“Why can’t | return explicitly at an earlier point? Why doesn’t Elixir have an explicit return?”

The short answer is, “Erlang doesn’t have explicit returns either and Elixir is built on Erlang.”

The longer answer is, with pattern matching, you have a new tool to solve old problems in a new way. Once you get comfortable
with pattern matching in functions, you won’t miss early returns. Your Elixir code becomes more understandable and readable
without them. If this is a concern of yours, just know for now that it'll be okay. Promise.

What if | don’t want to return anything?

There are times when a function does some work or creates a side-effect and there is nothing meaningful to return. A common
pattern you'll see in Elixir and Erlang is that those functions return the atom :ok .

defmodule Testing do

def do_stuff do
do stuff that can't fail or any errors are handled
tok

end

end

Testing.do_stuff
#=> o0k

Private Functions

Functions defined with the defp macro are “private”. They are not exported from the module. The can be called from within a
module, but are not available outside the module.

defmodule MyApp do

def public_do_work(input) do
private_work(input)
end

defp private_work(_input) do
I0.puts "working!"
end
end

MyApp.public_do_work(123)
#=> working!
#=> :0k

MyApp.private_work(123)

#=> *x (UndefinedFunctionError) function MyApp.private_work/1l is undefined or private
#=> MyApp.private_work(123)

Passing a Function by Name
We can refer to a specific function by name using it’s arity. We use the & to express that we want a reference to the function.

say_hello = &MyFoo.greeting/1
#=> &MyFoo.greeting/1

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Introducing Modules and Functions Page 22 of 74

| can now execute the function bound to the variable using a . to identify that the variable references a function to execute and
isn’t the name of the function itself.

say_hello. ("Mark")
#=> "Hello Mark!"

Using this technique, we can pass a function as a parameter into other functions.

defmodule MyFoo do
def greeting(name) do
"Hello #{name}!"
end
def process_name(name, fun) do
fun. (name)

end

end

Now we can let the process_name/1l function combine a piece of data and a function that we provide.

MyFoo.process_name("Mark", &MyFoo.greeting/1)
#=> "Hello Mark!"

MyFoo.process_name("Mark", &IO.puts/1)

#=> Mark

#=> :0k

MyFoo.process_name("Mark", &String.to_atom/1)

#=> :Mark

Default Arguments

An argument to a function can be given a default value using the \\ operator. It looks like this:

defmodule MyFoo do
def some_function(value \\ :default) do
value

end

end

Let’s create a new greeting function that also gives a compliment. We'll provide a default compliment.

defmodule MyFoo do
def greeting_with_compliment(name, compliment \\ "You look nice today!") do
"Greetings #{name}! #{compliment}"

end

end

When | execute the function with only a name given, the default compliment value is used. | can provide an override compliment
to use for that specific case.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Introducing Modules and Functions Page 23 of 74

MyFoo.greeting_with_compliment("Tom")
#=> "Greetings Tom! You look nice today!"

MyFoo.greeting_with_compliment("Bill", "That color suits you.")
#=> "Greetings Bill! That color suits you."

Multiple Functions are Created

When you give a default value to an argument, Elixir creates 2 versions of the function.

Using auto-completion, | can see that two functions were created.

iex> MyFoo.greeting_with_compliment
greeting_with_compliment/1 greeting_with_compliment/2

We didn’t explicitly create a greeting_with_compliment/1 function. That one was created for us. If we could see the generated code,
it would essentially look like this.

def greeting_with_compliment(name) do
greeting_with_compliment(name, "You look nice today!")
end

When the /1 function is called, it executes the /2 version passing in the default value for that argument. This is helpful to
understand so as you auto-complete your functions and see functions listed that you didn’t create, you understand where they are
coming from.

Module Names are Atoms Too!

Atoms are a significant part of Elixir. In fact, Elixir modules are atoms!

is_atom(MyFoo)
#=> true

Atom.to_string(MyFoo)
#=> "Elixir.MyFoo"

String.to_atom("Elixir.MyFoo")
#=> MyFoo

:"Elixir.MyFoo" == MyFoo
#=> true

Behind the scenes, an Elixir module is an atom with “Elixir” as part of the name. This namespaces it and makes it easier to identify
internally.

Aliases

As you organize your code into modules and namespaces, it can become pretty long. You can use an “alias” to create a name
shortcut for your code. Imagine something like the following module.

defmodule MyApp.Customers.Billing.History do
def compute_for_period(_from_date, _to_date) do
compute the value
103.5

end

end

In order to execute the function from outside the module, the full namespace is needed. This quickly becomes tedious.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Introducing Modules and Functions Page 24 of 74

month_total = MyApp.Customers.Billing.History.compute_for_period(month_start, month_end)

An alias can be declared anywhere. However, it is convention to declare the aliases all together at the top of a module.

defmodule MyApp.Customers do
alias MyApp.Customers.Billing.History

def compute_current_month() do
get the start/end dates for the current month
History.compute_for_period(month_start, month_end)

end
end

Be default, the alias name is the last piece of the namespace. In this case, “History”. Any references to “History” inside the module

declaring the alias are a shortcut to the full name.
)\

(7

@ Thinking Tip: Aliases are not Imports

In other languages, you must “import” or “require” code from another file into your current file
before you can call it. That is not the case in Elixir. An alias is not an import. It is only a name
shortcut. You can use the full namespace name to execute any code available in your application.
All public code is available to the application. Code is just a set of instructions. Only private
functions are blocked from execution outside of a module.

NS

Override the Alias Name

If the default name would create collisions or be unclear, you can alias it “as” something else to explicitly give it a name.

Let’s define some poorly named modules that will create a name collision when we alias them.

defmodule MyApp.Customers.Orders.Process do

def perform(_order) do
I0.puts "performing order work"

:ok
end

end
defmodule MyApp.Customers.Jobs.Process do

def perform(_job_info) do
I0.puts "performing job work"
:ok

end

end

When | have some code that needs to access both of the above modules, declaring the aliases like this won’t work as expected.
No error occurs, but the last alias command wins and the alias to “Process” is overwritten.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Introducing the Struct Page 25 of 74

alias MyApp.Customers.Orders.Process
#=> MyApp.Customers.Orders.Process

alias MyApp.Customers.Jobs.Process
#=> MyApp.Customers.Jobs.Process

Process
#=> MyApp.Customers.Jobs.Process

An alias that renames the default name might look like this:

alias MyApp.Customers.Orders.Process, as: OrderProcessor
alias MyApp.Customers.Jobs.Process, as: JobProcessor

OrderProcessor.perform(123)
#=> performing order work
#=> :0k
JobProcessor.perform(123)

#=> performing job work
#=> :0k

I don’t recommend module naming like this, but I've seen it enough times now that it's worth mentioning.

Introducing the Struct

A struct is an extension of a map with more strict rules about what keys it can have. A struct’s keys are atoms and cannot be
strings. Because of the strict definition of a struct, Elixir can provide compile-time checks for the keys. This won't prevent you from
adding invalid keys to the map, but it works very well for catching typos and when a key is renamed.

A struct is defined /nside a module and the name of the struct /s the module itself.
A simple struct:
defmodule Player do
defstruct [:username, :email, :score]

end

This defines a Player struct where the data has 3 named attributes. For a new struct, all the attributes will have the default value
of nil . When you copy/paste that module definition into IEx, you can then auto-complete on “ Player. ” and it completes to
Player._ struct__ . Execute that and you see the struct.

Player.__struct__
#=> %Player{email: nil, score: nil, username: nil}

The struct gets the name of the module Since we didn’t define any default values for the struct, Elixir assigned nil to each of
the attributes. For a Player, it would make sense that the score should default to 0 instead of nil .

Default Values

When declaring the struct, we can provide a keyword list to provide default values. That looks like this:

defmodule Player do
defstruct username: nil, email: nil, score: 0

end

When creating a new Player struct, it defaults the score to 0 for us.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Introducing the Struct Page 26 of 74

%Player{}
#=> %Player{email: nil, score: 0, username: nil}

Compile Time Checks on Keys

As mentioned before, Elixir can perform compile time checks for valid keys on the struct. This is an example of a runtime error for
an invalid key.

%Player{lives: 100}
#=> *xx (KeyError) key :lives not found
#=> expanding struct: Player.__struct__/1

A Struct is a Map

A struct is a map and can be accessed using normal map functions.

gary = %Player{username: "Gary'", score: 100}
#=> %Player{email: nil, score: 100, username: "Gary"}

is_map(gary)
#=> true

Map.get(gary, :score)
#=> 100

gary.score
#=> 100

(7

2

@ Thinking Tip: A struct can be like an OOP class

An Elixir struct is similar to a “class” in Object Oriented Programming languages. If you think
about a class as the explicit linking of a data structure and the methods (or functions) that
operate on that data, then a well-defined struct/module can do the same thing. The main
difference for a struct is that the data structure and the functions are not explicitly tied together.
We define them in the same place as a convenience both to the developer creating the data
structure and writing the tests, but also to the developer using the struct. The primary functions
for operating on the struct are located in the same namespace.

NS 2

No Default Access Behaviour

A struct does not implement the Access Behaviour mentioned when talking about Maps. That behaviour (yes, spelled the British
English way) allows you to use [] to provide a key to access a value in a map. When you try that on a struct it fails.

gary[:username]

#=> *xx (UndefinedFunctionError) function Player.fetch/2 1is undefined (Player does not implement the Acces
s behaviour)

#=> Player.fetch(%Player{email: nil, score: 100, username: "Gary"}, :username)

#=> (elixir) lib/access.ex:322: Access.get/3

gary.username
#=> "Gary"

Structs have pre-defined atom keys. You can use the key name like gary.username and it returns the value.

There’s Much More to Structs

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Introduction to Pattern Matching Page 27 of 74

This is only an introduction to Elixir structs so we have enough of a foundation to use them in pattern matching. The combination
of structs and pattern matching are powerful and beneficial. They are two features that go great together.

For more information on structs, they are covered in more detail in the Elixir Fundamentals Collection. You can also find
information online.

Introduction to Pattern Matching
Meet the Match Operator “="

The “ = " sign in most programming languages means “assignment”. You are assigning some value to a variable. In Elixir, we
don’t “assign” values to variables, we “bind” a variable to point to a value. That gives us our first hint that things are different
here. In Elixir, we call “ = ” the “Match Operator”. Now you know it’s going to behave differently when it has such a different
name!

Similar to operators like “ + “, “ - “, and “ * " there is a left and right side of the Match Operator. The left side of the match operator
is the pattern. The right side is the data being matched.

pattern = data

What Happens in a Match?

Three things that can a// happen at the same time when a match is performed.

1. Match the type of data
2. Match the shape of data
3. Bind values to variables

Let’s see an example of doing those three things the “normal” non-pattern matching way. Let’'s say the data we want to use is the
following map.

data = %{name: "Howard", email: "howard@example.com"}

Now imagine | have a function that takes a given piece of data that may or may not be a map. | want to verify that it /s a map,
then that the map has the key :name and finally, bind a variable called name to that value in the map. The code might look
something like this:

name = # result is bound to name
if is_map(data) do # match type
if Map.has_key?(data, :name) do # match shape
Map.get(data, :name) # get :name value
end
end
name # name variable is bound to value

#=> "Howard"

| systematically “poke” the data blindly trying to feel out it's shape. Once | know that it /jsa map and it hasa :name key, then |
can get that value and bind the name variable.

A Pattern Match match does this all in single statement. Instead of a series of “pokes” at the data, | say, “This is the type and
shape of the data | want. If it matches, bind the value to a variable called name “.

%{name: name} = %{name: "Howard", email: "howard@example.com"}

name
#=> "Howard"

This is “declarative”. | state the conditions that must be met for it to match (the pattern) and /fit matches, the value is bound!

If the type matches and the data’s shape matches, then it “pulls apart” the data by binding values to variables. This is also
“destructuring” the data or “unpacking” it for us.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://thinkingelixir.com/available-courses/elixir-fundamentals/
https://elixir-lang.org/getting-started/structs.html

Introduction to Pattern Matching Page 28 of 74

7)

@ Thinking Tip: Elegance in communication

The imperative version is a series of instructions that accomplishes something similar to the
pattern matching version but it is much less clear. The imperative version tells us how to do it
but a developer reading then code is left to figure out what is being done.

Pattern matching gives us an elegance in communicating whatis happening to the developer. It
is clearer, simpler, and so much better!

Pattern matching helps us create code that avoids nested if statements. Our code becomes
flatter, clearer, easier to read and easier to maintain.

NS
The Simplest Match

The simplest version of a match is this:

S

#=> 5

It doesn’t /ook like anything special. It looks like a normal variable assignment you see in other languages. However, the BEAM
takes the statement and perform those three pattern matching steps for us:

1. Does the type match? No type was specified, so “yes”.
2. Does the shape match? No shape was specified, so “yes”.
3. Bind the variable to the value.

After this statement, x is bound to the value 5 . It skips right to binding because we didn’t provide a pattern to match.

Match Without Binding

You can perform a Pattern Match without binding a variable to a value. This is an example of that:

#=> 5

= X
#=> 5

If x has the value of 5, and we are matching the statement 5 = x then the BEAM performs the Pattern Match steps for us like
this:

1. Does the type match? The left side is an Integer and x is bound to an Integer, so “yes”.
2. Does the shape match? The left side has the shape 5 and x is bound to a shape of 5, so “yes”.
3. Nothing to bind. No variables were given on the left side.

The statement 5 = x is invalid in assignment-based languages but in Elixir, this is a valid match!

You may never have thought of the number 5 as a “shape” for data, but it is! You can think of the number 5 as a specific shape of
an Integer.

Match Error

What happens when a match is not made? When we write a Pattern Match like 5 = 3, we are telling the BEAM, “This has to
match!”. The expression doesn’t give the BEAM an alternative for what to do when it doesn’t match. We are basically asserting
that it matches with the way the expression is written. When the BEAM has no other option, a Match Error is raised.

Here’s an expression that cannot match and results in a Match Error.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Introduction to Pattern Matching Page 29 of 74

5=3
#=> %% (MatchError) no match of right hand side value: 3
The BEAM is saying, “You asserted that this matches and it doesn’t. Error!”

We will look at Pattern Match expressions that allow for elegant alternatives to a Match Error. In fact, those other ways are at the
heart of what makes pattern matching so awesome!

The Pin Operator: ©

Sometimes we want to use a variable in a match without having the variable become bound to a value. To do this we use the “Pin
Operator” ~ . If you are familiar with pointer-based languages, | think of it as a “pointer dereference”. It's simple enough to think
of it as saying, “don’t bind me, use the value | point to for the match comparison” and it has a little arrow-like character ~ to help
visualize it is pointing back to the value.

Let’s see what that looks like:

=5
#=> 5

Ax = 6

#=> %% (MatchError) no match of right hand side value: 6

Ax =5
#=> 5

The Pin Operator can be used with every data type. It can be very useful in pattern matching.

Exercises

Here are some commands to try out in an IEx session. Play with what makes a match and what doesn’t. Get familiar with the Match
Error message because while you are learning Elixir, you will likely encounter it a lot. As you become more comfortable, you will
instinctively know what will match and you will encounter the error a lot less.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Introduction to Pattern Matching Page 30 of 74

a=1
#=> 1
a=1+5
#=> 6
6 = a
#=> 6
5=a

#=> ** (MatchError) no match of right hand side value: 6

3 =2
#=> %% (MatchError) no match of right hand side value: 2

Ax =3+ 5
#=> %% (MatchError) no match of right hand side value: 8

AX = X

#=> 5

ok = :ok
#=> o0k

ok = :error

#=> ** (MatchError) no match of right hand side value: :error

[1, 2] = [1, 2]
#=> [1, 2]

[1, 2] = [3, 4]
#=> ** (MatchError) no match of right hand side value: [3, 4]

Limits to Matching

Pattern matching is everywhere in Elixir. It is a powerful and central language feature. There is a limit that is important to
understand. You cannot execute a function on the left-hand side of a match.

length([10]) = 1
#=> %% (CompileError) jex:6: cannot invoke remote function :erlang.length/1l dinside match

length([10]) == 1
#=> true

Note that the “ == " or equality operator works as you’d expect.

Functions can create side effects. Examples of side effects:

Making an HTTP call to an external service

Modifying records in the database

Creating logging output

Writing to a file

Sending a message to another process that creates a side effect like modifying the database

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Matching Complex Data Types Page 31 of 74

The BEAM is trying to determine /fthe data on the left-side matches what is on the right. /fit matches, then we may want to
intentionally create side effects in our system. The process of performing a match is not allowed to create side effects.
Because of this, no function calls are allowed on the left side of a Pattern Match statement.

Recognizing a Common Error

If you are coming from an Object Oriented language, you will likely accidentally see this error a lot in the beginning. A common
mistake for developers new to immutable data structures is trying to mutate data. The result will be the error cannot invoke remote
function [?] inside match . Let’s see how this happens.

user = %{name: "Jim"}
#=> %{name: "Jim"}

user.name
#=> "Jim"

user.name = "Howard"
#=> %xx (CompileError) iex:3: cannot invoke remote function user.name/0 inside match

There are a few things happening with this code.

1. The developer is trying to use the match operator “ = " to perform an “assignment”. In effect, they are trying to “assign”
the value “Howard” to the map’s name key. This isn’t how pattern matching binds variables.

2. The developer is trying to mutate the map. Remember, data in Elixir is immutable. The change could be made with user =
Map.put(user, :name, "Howard") or using the abbreviated update syntax of user = %{user | name: "Howard"}.

3. The left side is actually a function user.name/0 . Functions are not allowed on the left side of a match.

Why did the error say cannot invoke remote function user.name/0 inside match ? Why did it say we were trying to execute a function
on the left-side of the match operator?

In Elixir, the Access behaviour is a convenience that is available to a Map and other data structures. It turns our short-hand access
of user.name into a function that effectively calls Map.get(user, :name) for us. Even though we didn’t create or call the name/0
function, the Access behaviour was executed for us, and thatis how the function was called. So the left side of the match
statement turned into a function call! Couple that with a misuse of the match operator and now you understand the error
message.

Hopefully this helps you quickly recognize the error message you’ll see as you occasionally forget and fall into an old code habit
and misuse the match operator. It's okay. It takes time to establish new habits and new ways of thinking about something as
common as the equals sign “ = “.

Matching Complex Data Types

“Complex Data Types” refers to collection data structures. They include tuples, maps, structs and lists. Each type can contain
other data structures either simple or complex.

Matching to Destructure Data

The Match operator is really powerful for pulling data apart or “destructuring” the data. This is what the “binding” step is doing.
The BEAM can bind a variable to a location deep in a data structure just because it matched the pattern we described.

We'll look at some examples of how this works for the different collection data types.

Map
Struct
Tuple
List

We'll also look at how to do this with the Strings and binary types.

Case Statement

Part of the magic of pattern matching is that when it doesn’t match our specific pattern, it continues on to try the next pattern. To
play with this, we’ll use the case statement. Pattern matching is everywhere in Elixir and that is true for the case statement as
well.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/master/Access.html

Matching Complex Data Types Page 32 of 74

Let’s look at how a case statement works.

case data_being_examined do
pattern_1 -> code_to_execute_when_matches
pattern_2 -> code_to_execute_when_matches
pattern_3 -> code_to_execute_when_matches
end

The patterns are checked from top to bottom. If it doesn’t match pattern_1 then it checks pattern_2 and so on. This looks a lot
like a switch statement in Javascript.

Three important things to remember:

1. it tests the patterns going from top to bottom
2. it breaks or stops on the first pattern that matches
3. it has all the power of pattern matching (type, shape and binding)

Matching a Map

With a case statement to play with, let’s start with a Map. Let’s look at an example using code you can paste into IEx.

data = %{name: "Howard", age: 35}

case data do
%{name: "Howard"} -> "Yes sir Mr. Admin!"
%{name: name} -> "Greetings #{name}!"
%{age: age} -> "I don't know who you are, but you're #{inspect age} years old!"
_other -> "Uhh.... what's that?"
end

#=> "Yes sir Mr. Admin!"

After pasting that code in, it returns "Yes sir Mr. Admin!". The match was for a map (type), with a :name key and a value of
"Howard" (shape). That's very specific match! Also note, it stopped at the first match.

Let’s try sending a different piece of data though the case statement and see what happens.

data = %{name: "Jill", age: 30}

case data do
%{name: "Howard"} -> "Yes sir Mr. Admin!"
%{name: name} -> "Greetings #{name}!"
%{age: age} -> "I don't know who you are, but you're #{inspect age} years old!"
_other -> "Uhh.... what's that?"
end

#=> "Greetings Jill!"

After pasting in the case statement again, you should get a different result. The more specific pattern that included the name

"Howard" in the pattern didn’'t match the data for "Jill". So the pattern match moved on to the next pattern and that one
matched.

The 2nd pattern given is for a map (type) with a :name key (shape) but we don’t specify what the value must be. We provide a
name variable to bind the value to and magically it is bound to the string "Jill" and available for use in our code!

Now what will happen if the data being matched is the number 57

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch

Matching Complex Data Types Page 33 of 74

data = 5

case data do
%{name: "Howard"} -> "Yes sir Mr. Admin!"
%{name: name} -> "Greetings #{name}!"
%{age: age} -> "I don't know who you are, but you're #{inspect age} years old!"
_other -> "Uhh.... what's that?"
end

#=> "Uhh.... what's that?"

The first 3 patterns we specified are all maps. When it doesn’t match any of those, we can specify a “catch all” pattern that will
match no matter what. You can think of this like an else or default in other switch -style statements. This pattern doesn’t define
a type or a shape, so it matches.

Order is Important!

We've already seen that the patterns match from top to bottom. Let's make that really clear here because it is really important!

Returning to the first data example with Howard, we’ll rearrange the patterns.

data = %{name: "Howard", age: 35}

case data do
%{name: name} -> "Greetings #{name}!"
%{name: "Howard"} -> "Yes sir Mr. Admin!"
%{age: age} -> "I don't know who you are, but you're #{inspect age} years old!"
other -> "Uhh.... what's that?"
end

#=> "Greetings Howard!"

The less specific pattern that doesn’t match on the value of the name is now higher. The pattern matches and the result is
"Greetings Howard!" even though a more specific and “better” match exists. It stops at the first match!

At the risk of over emphasizing this point, lets rearrange the patterns one more time. Let’'s move the other pattern to the top.

data = %{name: "Howard", age: 35}

case data do

other -> "Uhh.... what's that?"

%{name: "Howard"} -> "Yes sir Mr. Admin!"

%{name: name} -> "Greetings #{name}!"

%{age: age} -> "I don't know who you are, but you're #{inspect age} years old!"
end

#=> "Uhh.... what's that?"

In this example, we can see that multiple other patterns are “better” matches for the data than the “ other " pattern. It doesn’t
matter though, the first pattern to match gets the data!

@ Thinking Tip: Be Specific!

Try to start with the most explicit or specific pattern you can. These are often the “edge cases”.

Using the underscore to define shape

A significant part of pattern matching is defining the “shape” of the data. Not just the values or attributes, but the very shape
itself. To help with this, we can use the underscore character “ _ " to help define a shape that lets us ignore the value.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Matching Complex Data Types Page 34 of 74

%{name: _}

This defines a pattern for a map that has an atom key of “ :name “. Because of the _, we skip the “binding” step and we also
don’t specify a value it should have. This lets us be more specific about the shape of the data that we care about for this pattern.

Named for Developer Clarity

We can give a name to the ignored space that helps for developer clarity. It doesn’t impact the usage or value, but it does convey
meaning to the developer.

%{name: _username} = data
%{name: _company_name} = data
%{name: _pet_name} = data

All 3 of the patterns describe the same shape. The difference is in the named placeholder. This doesn’t change the shape but it is
certainly helpful to another developer who comes across the code later!

Tuples and Shape

Tuples are very specific about their shape. A two element tuple is completely different from a three element tuple. Using the _
underscore is very helpful for specifying the shape of the pattern.

{—’ - _}

This defines the pattern for a 3 element tuple. It doesn’t matter about the “values” in the tuple, but it defines the “shape” as being
a tuple with 3 elements.

Naming the placeholders for developer clarity is really beneficial here. The following pattern still defines a 3 element tuple.
However, it gives much more meaning to the positions!

{_year, _month, _day}

Deeper Data Matches

If you’ve ever dealt with pulling data out of a deeply nested structure, then you’ve felt the pain of deeply nested if statements.
With pattern matching, you can handle pulling out deep data much more elegantly. In this example, our data is a map with two
deeper nested maps. The value we want in on the very inside map, but only if the important_flag value is set to true .

data = %{
important_flag: true,
level_1: %{
other: "stuff",
level_2: %{
value: 123,
more: "stuff"

case data do
%{important_flag: false} -> {:ok, 0}
%{important_flag: true, level_1: %{level_2: %{value: valuel}}} -> {:ok, value}
_other -> {:error, "Invalid data"}

end

#=> {:0k, 123}

Try changing the shape of the data and run it against the case statement to see how it behaves.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Practice Matching a Map Page 35 of 74

Nesting Data Types

Pattern matching works as you nest different data types inside each other. Imagine a function that looks up a user by some search
criteria. If it finds the user it is returns an {:ok, user} tuple.

In this example, we can match the two element tuple (type and shape), the first element is an :ok atom (shape), the second
element is a map (type), the user :email key (shape) and finally bind the email variable to the value. This is a very common
pattern!

user = %{id: 1, name: "John", email: "john@example.com", active: true}
function_call_result = {:ok, user}

case function_call_result do
{:0k, %{email: email}} -> "Sending email to: #{email}"
_other -> "Nothing to do"

end

#=> "Sending email to: john@example.com"

When you start to break it down, there’s a lot happening here. But | don’t have to think about it. | declare the pattern I'm looking
for and when it matches, the instructions to perform are executed. It's declarative and clean. The Pattern Match works both for
conditional logic and flow control.

Recap

Here we’ve covered working with maps and tuples in pattern matches. The point worth understanding is the following things apply
to al/l data types, not just maps and tuples.

The case statement can match any data type

Order in pattern matches is very important

The first pattern to match is the one that’s used

The _ can be used as a placeholder to define a pattern’s shape
Matching and binding to deeply nested data works on all types

Practice Matching a Map

You learn by doing. Here are a few exercises to play with in IEx. The solutions are here but hidden. Find the solution yourself first.
Experiment. Have fun!

Exercise #1

Write the left hand side of this statement. Your goal is to on/y match when the map has an atom key of :amount and then binds
the value for that key to the variable named value . What does the left side look like?

_your_statement = %{name: "Your Customer, Inc", amount: 142}

Showing Solution

%{amount: value}
The full match statement as:
%{amount: value} = %{name: "Your Customer, Inc", amount: 142}

The value variable should be bound to the value 142 . You can verify:

value
#=> 142

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Practice Matching a Tuple Page 36 of 74

Exercise #2

Write the left hand side of this statement. Your goal is to on/y match when the map has a string key of "name" and then binds the
value for that key to the variable named name . What does the left side look like?

_your_statement = %{"name" => "Your Customer, Inc", "amount" => 142}

Showing Solution

%{"name" => name}
The full match statement as:

%{"name" => name} = %{"name" => "Your Customer, Inc", "amount" => 142}
The name variable should be bound to the expected value. You can verify:

name
#=> "Your Customer, Inc"

Exercise #3

Write the left hand side of this statement. Your goal is to on/y match when the map has both string keys of "name" and "amount" .
We don’t care what the "name" value is, but the key should be present. Bind to the amount value. What does the left side look
like?

_your_statement = %{"name" => "Your Customer, Inc", "amount" => 142}

Showing Solution

%{"name" => _name, "amount" => amount}
The full match statement as:

%{"name" => _name, "amount" => amount} = %{"name" => "Your Customer, Inc", "amount" => 142}
The amount variable should be bound to the expected value. You can verify:

amount
#=> 142

Practice Matching a Tuple

You learn by doing. Here are a few exercises to play with in IEx. The solutions are here but hidden. Find the solution yourself first.
Experiment. Have fun!

Exercise #1

Write the left hand side of this statement. Your goal is to on/y match when the first element of the tuple is :ok and then bind the
value 1500 to a variable named answer . What does the left side look like?

_your_statement = {:ok, 1500}

Showing Solution

{:0k, answer}

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Matching a List Page 37 of 74

The full match statement as:
{:0k, answer} = {:o0k, 1500}
The answer variable should be bound to the value 1500 . You can verify:

answer
#=> 1500

Exercise #2

Given a tuple that represents a date used in native Erlang functions, how would you bind a variable to the month value? The
format is {year, month, day}

_your_statement = {2020, 2, 14}

Showing Solution

{_, month, _}
The full match statement as:
{_, month, _} = {2020, 2, 14}
The month variable should be bound to the value 2. You can verify:

month
#=> 2

It can also be written using placeholder names. The values are still disregarded, but it communicates what kind of value is in that
position.

{_year, month, _day} = {2020, 2, 14}

Matching a List

A list is a common data structure. You'll have lists of customers, orders, players, etc. You will need to process lists a lot. Because
of how often you’ll be working with them, let’s spend a little more time talking about a different way to think about lists.

Lists are Freaky Little Snakes

Lists are very different from Arrays in other languages. They look deceptively similar. | think it helps to think about lists as snakes.
A normal cute little snake. Not the scary kind at all.

i

There are 2 parts to this snake. The “head” and the “tail”.

i

Head Tail

Now imagine the snake has consumed a sequence of numbers. The first one eaten is the furthest inside. The last one eaten is still
in the head.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Matching a List Page 38 of 74

~
o)

| want to process this list and pull off the “head” value. Using a Pattern Match, | can cut off the head of the snake and break it into
the two parts “head” and “tail”.

\Y4

IN

——
i

I've detached the head from the tail. Now the freaky part! The tail grows a new head!

DY

In this way a list is recursive. When you remove the head, the tail is a new list and so has a head of its own!

Tools of the Trade

The square brackets and pipe characters (ie. [, |, 1) are very useful when working with lists.

They can be used to add a new element to the front of a list:

existing = [2, 3, 4]
[1 | existing]
#=> [1, 2, 3, 4]

The same characters can be used in a Pattern Match to destructure a list and separate the list’'s head from the tail.

existing = [1, 2, 3, 4]
[head | tail] = existing

head
#=> 1
tail
#=> [2, 3, 4]

Here we're going to focus on using this tool for pattern matching.

Lists Matching

Let’s look at some examples for pattern matching a list.

What if | want to pull off the head of the list but | don’t care about the rest of the list. | only want the head. | might try this:

[head] = [1, 2, 3, 4, 5]
#=> ** (MatchError) no match of right hand side value: [1, 2, 3, 4, 5]

This won’t work because the pattern | defined on the left says it is a 1 element list. But that’s not what | want. By using the pipe | |
can separate the head from the tail. Since | don’t care about the tail, I'll use the underscore _ to ignore it.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Matching a List Page 39 of 74

[head | _tail] = [1, 2, 3, 4, 5]

head
#=> 1

With this pattern I'm saying, “Bind the list’s head to head and ignore the rest”.
If | have a list of length 1, what happens? There are no numbers in the tail.
[head | tail] = [1]
head
#=> 1

tail
#=> []

Remember a list is recursive. Even when there is nothing in the tail, | will receive a new list. In this case, it happens to be empty.
This allows me to Pattern Match a list with only 1 element in it too.

If | explicitly want to match against a list with only 1 element in it, | can this way:
[first] = [1]

first
#=> 1

Multiple Heads?

You are not limited to only putting 1 element in the head portion of the pattern [head | tail] . You just need to comma separate
them.

[a, b, c | rest] = [1, 2, 3, 4, 5]

#=> 3
rest
#=> [4, 5]

The pattern [a, b, c | rest] says, “With a list of af /east 3 elements, bind the 1stto a, the 2ndto b, the 3rd to ¢ and whatever
remains bind to rest.” So this pattern will not match a list with two or fewer elements.

[a, b, c | rest] = [1, 2]
#=> %% (MatchError) no match of right hand side value: [1, 2]

[a, b, c | rest] = [1]
#=> ** (MatchError) no match of right hand side value: [1]

[a, b, c | rest] = []
#=> %% (MatchError) no match of right hand side value: []

Matching an Empty List

If you want to match that a list is actually empty, the pattern to use is an empty list [].

1=1

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Matching a List Page 40 of 74

Using the pattern [head | tail] with an empty list fails.

[head | taill = []
#=> ** (MatchError) no match of right hand side value: []

The pattern is saying, “It must be a list with at /east 1 element in it. It can have more, but must have at least 1.”

Matching to an Exact Sized List

We saw how you can match to “at least” a number by including the | and a variable or placeholder in the tail position. You can
also match against an exact number. This is a pattern that more explicitly defines the shape of the list.

fa] = [1]

a
#=> 1

la, b] = [1, 2]

#=> 2

[a, b, c] = [1, 2, 3]

*+ O * T # Q
1
v
N

1
\4
w

Matching Values in the List

We can also be more explicit about the shape of the list by giving a pattern that includes explicit values.

[1] rest] = [1, 2, 3, 4]

rest
#=> [2, 3, 4]

This pattern says, “It must be a list with at least 1 element and it starts with a 1 .” This pattern won’t match a list that starts with
something other than a 1.

[1] rest] = [2, 3, 4]
#=> ** (MatchError) no match of right hand side value: [2, 3, 4]

Pin Operator Matching Values

We can also use the Pin Operator ~ to describe a pattern.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Practice Matching a List Page 41 of 74

head = 12
[*head | rest] = [12, 13, 14, 15]

rest
#=> [13, 14, 15]

head = 0
[*head | rest] = [12, 13, 14, 15]
#=> ** (MatchError) no match of right hand side value: [12, 13, 14, 15]

This pattern says, “It must be a list with at least 1 element and the first element must be the value bound to the head variable.
Bind whatever else is there to the rest variable.”

Recap

Quick review of some important properties of pattern matching a List.

A List is recursive. When we pull off the “head”, the “tail” is itself a list.

We can specify patterns that a list must match an exact number of elements or “at least” a number of elements.
We can use explicit value to define the shape of the data.

We can use the Pin Operator to define the shape of the data.

Understanding how to Pattern Match lists lets us do some pretty cool things. One cool thing is we can recursively process a whole
list using pattern matching without using a for or while style loop.

Practice Matching a List

You learn by doing. Here are a few exercises to play with in IEx. The solutions are here but hidden. Find the solution yourself first.
Experiment. Have fun!

Exercise #1

Write the left hand side of this statement. Your goal is to bind the head of the list to a variable named head and the rest of the list
to a variable named tail . What does the left side look like?

_your_statement = [1, 2, 3]

Showing Solution

[head | tail]
The full match statement as:
[head | tail] = [1, 2, 3]
Verify that head and tail has the expected values:

head
#=> 1

tail
#=> [2, 3]

Exercise #2

Create a match that only matches when a list has a single item.

_your_statement = [10]

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Practice Project Page 42 of 74

Your solution should not match with values on the right like these: [10, 20] and [11, 12, 13].

Why would we want to only match in very limited cases? We don’t want to have the “greediest” match or a match that catches the
most it can, we want the most specific match that meets our requirement. Pattern matching lets us more explicitly and perfectly
match what we are looking for.

Showing Solution

[first]
The full match statement as:
[first] = [10]
Verify that first has the expected value:

first
#=> 10

The other list types should result in a match error:

[first] = [10, 20]
#=> %% (MatchError) no match of right hand side value: [10, 20]

Exercise #3

Create a match that only matches when a list has at least two items.

Create a match that matches and pulls the first 2 items off the list and ignores the rest. Bind the first 2 elements to variables
named a and b.

_your_statement = [1, 2]

Does your solution work with a list like [1, 2,317

Showing Solution

[a, b | _rest] or [a, b | _]
The full match statement as:
[a, b | _rest] = [1, 2, 3]

Verify that a and b have the expected values:

#=> 1

#=> 2

Practice Project

A practice project is available to make it easier to play with pattern matching in increasingly advanced scenarios.

Pattern Matching practice project =~ Download

The project has no other dependencies so if you already have Elixir installed then you are ready.

Intro to TDD

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://thinkingelixir.com/wp-content/uploads/2019/05/pattern_matching.zip
https://thinkingelixir.com/wp-content/uploads/2019/05/pattern_matching.zip

Pattern Matching a Function Body: Intro Page 43 of 74

TDD stands for “Test Driven Development”. The idea with TDD is that you spend some up-front time thinking about what your goal
is with the code you will write. You first write a test that says, “given this situation and input, the code should cause this result or
return this output.” The test is written to “assert” that the desired behavior happened. If the code doesn’t, then the test fails.

In this project the tests have already been written for you. The tests assert that a function behaves in a specific, desired way.
Initially, all the tests are failing because the functions don’t behave correctly. The functions haven’t been implemented yet and
that’s yourjob!

The value of the tests is they help validate and check that your solution satisfies the requirements. They are additionally helpful
because they make it easy to continue to re-check your solution when you refactor or make other code changes.

Running Tests

Try running the tests for the whole project first. From a command-line terminal, go to the directory location where you downloaded
the files and run the following command:

mix test

You should see a lot of errors. That's expected. You are seeing a// the failing tests for the whole project. Don’t worry about that, I'll
walk you through where to start working. We’'ll focus on a single file at a time and within that file we’ll focus on just a couple tests
at a time.

With the ability to run tests in the practice project, you're ready to start really digging in to pattern matching!

Pattern Matching a Function Body: Intro

We started playing with pattern matching using the case statement. This is valid and a very common tool. Now we really have fun
when we start pattern matching with functions!

Matching with a Function

Pattern matching using a function declaration is really powerful! A big part of pattern matching is what happens when it doesn’t
match? It goes on to the next pattern to check. So it is with functions. We can define multiple versions of a function where each
one defines a different pattern. These are different clauses. You can think of it like overloaded functions, but each version is to
handle a specific data type and shape. It makes more sense when we have some code to look at.

defmodule Testing do

def do_work(true) do
{:0k, "I did some work!"}
end

def do_work(false) do
{:0k, "I refuse to work."}

end

end
Paste that module into an IEx shell. Using tab completion, we can see there is only 1 function declared on our module.

Testing.do_work
#=> do_work/1
Remember the /1 means it takes 1 argument.

When we execute the function passing in true , pattern matching kicks in and the BEAM looks at the different function clauses we
defined. It starts from the top and if the pattern matches, that version of the function gets executed.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://en.wikipedia.org/wiki/Test-driven_development

Pattern Matching a Function Body: Intro Page 44 of 74

Testing.do_work(true)
#=> {:0k, "I did some work!"}

Testing.do_work(false)
#=> {:0k, "I refuse to work."}

As defining functions goes, a function definition with types, shapes, and values in the function declaration looks weird! Honestly,
until you understand pattern matching, even reading Elixir is confusing. | remember looking at Elixir code and not knowing how to
mentally parse what it was doing! No where is that more true than with functions. When function declarations include patterns,
they just don’t even look like “normal” code.

Until you understand pattern matching, even
reading Elixir code is confusing.

Once | understood what was going on and how pattern matching in functions works, then I thought, “Why isn’t every language
doing this?” The problem | had with reading Elixir code was because | had never seen pattern matching in a language before. That
won’t be your problem now!

7)

@ Thinking Tip: Function Overloading?

Is multiple function clauses the same thing as “function overloading“? Not really. Typically
function overloading gets evaluated at compile time while pattern matching function clauses
happens at runtime. The BEAM is comparing the data against the various function clauses.
Beyond just the type of each argument, the BEAM can look deeper into the shape of the data for
making the match.

Also, function overloading is often used in other languages to define a function with a different
number of arguments. Remember, in Elixir functions are very much “arity” based. So a different
number of arguments is a different function.

| don’t think it hurts to think of it as function overloading if that helps you, however, they are
different things.

NS 4

Single Line Function Clauses

A common thing you will see in Elixir code is writing function clauses as a single line when then are simple. This is what that looks
like:

defmodule Testing do

def do_work(true), do: {:ok, "I did some work!"}
def do_work(false), do: {:ok, "I refuse to work."}

end

This becomes very clear and clean!

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://en.wikipedia.org/wiki/Function_overloading

Pattern Matching a Function Body: Intro Page 45 of 74

When writing a function clause this way, please note the def name(args), do: return_value syntax. There is no closing end for the
function. And note the , before the do and that the do: makes it an atom. You will see this code a lot but it has some special
little syntax differences to pay attention to.

When a Function Doesn’t Match

With the previous do_work/1 example, what happens if | pass in some data that doesn’t match the patterns | defined?

Testing.do_work("abc")
#=> ** (FunctionClauseError) no function clause matching in Testing.do_work/1

#=>

#=> The following arguments were given to Testing.do_work/1:
#=>

#=> # 1

#=> "abc"

#=>

#=> jex:3: Testing.do_work/1

Itisn't a MatchError because we aren’t using the Match Operator. It's a FunctionClauseError . We defined a do_work function with
two clauses. The error tells us that none of the clauses we defined match the data. The error is helpful because it shows us what
the data looked like that it couldn’t match against.

Your Flip-the-Lid Clause

Our function clauses couldn’t handle the data "abc" because they were explicitly matching on the values true and false . What if
you want the ability to catch everything else? For an if statement, we're talking about the else clause. In Elixir, it's the
“everything else comes here” function clause.

You already know how to bind to a variable without specifying a type or shape for the pattern. It’s the same thing here! In this
case, if we are given some data that we don’t know how to process, we’'ll treat it as an error. Let’s see what that looks like:

defmodule Testing do

def do_work(true), do: {:ok, "I did some work!"}
def do_work(false), do: {:ok, "I refuse to work."}

def do_work(other) do
{:error, "I don't know what to do with #{inspect other}"}
end

end

The addition of a new function clause that doesn’t define a pattern works perfectly for handling all the other data that can be
thrown at our function without causing a FunctionClauseError . Let’s throw some data at it and see what it does!

Testing.do_work("abc")
#=> {:error, "I don't know what to do with "abc""}

Testing.do_work(1)
#=> {:error, "I don't know what to do with 1"}

Testing.do_work(%{a_map: true})
#=> {:error, "I don't know what to do with %{a_map: true}"}

Testing.do_work([1, 2, 3])
#=> {:error, "I don't know what to do with [1, 2, 3]"}

Order Matters!

The order of the clauses really matters! The pattern matching stops when the first match is found. The data is “captured” by the
function. Even if a better or more exact match exists, it won’t be used if another function clause matches it first.

Let’s see what happens when we put the “flip-the-lid” version first...

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Intro Page 46 of 74

defmodule Testing do

def do_work(other) do
{:error, "I don't know what to do with #{inspect other}"}
end

def do_work(true), do: {:ok, "I did some work!"}
def do_work(false), do: {:o0k, "I refuse to work."}

end
The first thing you'll notice is we get 2 compiler warnings for the more specific function clauses.

warning: this clause cannot match because a previous clause at line 3 always matches
iex:7

warning: this clause cannot match because a previous clause at line 3 always matches
jex:8

The compiler can detect when a function clause will neverbe reached because the first clause doesn’t define a pattern. Try
executing the function passing in true .

Testing.do_work(true)
#=> {:error, "I don't know what to do with true"}

When we call the function with data that has a perfect match, it doesn’t get executed! It is captured by the first match
encountered. So order is very important. The order is checked goes top down.

Also note when a function has multiple arguments, it is possible to define function clauses where the compiler can’t te//itisn’t
what we actually want. It won’t warn us in every situation. It is up to us to pay attention to the order in which we define our
clauses.

Code Without Pattern Matching

You could easily write equivalent code without using pattern matching. That version of it might look like this.

defmodule Testing do

def do_work(value) do
if value == true do
{:ok, "I did some work!"}
else
if value == false do
{:0k, "I refuse to work."}
else
{:error, "I don't know what to do with #{inspect value}"}
end
end
end

end

Testing.do_work(true)
#=> {:0k, "I did some work!"}

Testing.do_work(false)
#=> {:0k, "I refuse to work."}

Testing.do_work("abc")
#=> {:error, "I don't know what to do with "abc""}

While this code may fee/familiar, | strongly encourage you to avoid the temptation to fall back into this style. The “Elixir way” is to
prefer the use of a pattern matching over if conditionals. The code is flatter and easier to read. It values the pattern of the data

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Tuples Page 47 of 74

over the explicit process of “poking” the data to figure out its shape.

7)

@ Thinking Tip: See IF as an anti-pattern

Saying the Elixir way prefers pattern matching over if conditionals does not mean you can never
use an if statement! There are valid cases for their use and they are part of the language!
However, consider the use of if statements (especially an excessive use) as an anti-pattern in
Elixir.

NS 4

Compare the if conditional version above code to the pattern matching version. The Elixir-way is declarative, direct, clear, and
much easier to reason about. At least it's easier to reason about now that you understand pattern matching and function clauses!

Ready, Set, Go!

With the basics of pattern matching for the different data types covered and an introduction to using pattern matching with
function clauses, you are ready to jump in and have fun!

Pattern Matching a Function Body: Tuples

The following exercises use the Pattern Matching project. Here you will focus on making a single test pass at a time.

The tests we are focusing on are in test/tuples_test.exs . Running the following command will execute a//the tests in this file.
Running all the tests now will show they all fail.

$ mix test test/tuples_test.exs

Finished in 0.07 seconds
7 tests, 7 failures

Randomized with seed 866762

I'll spare you the display of the failing tests. Run it for yourself and you can see it! We're going to tackle them one at a time. For
the first one, I'll walk you through it more step-by-step.

Exercise #1 - Tuples.day from_date/1

In this exercise, we want to write a function clause that matches on a 3 element tuple and returns one of the values from it. In
Erlang, dates are represented as a tuple like this: {2019, 5, 30} . The function you need to write will match on this type of date
and return the day number from it.

First, run the test for this one by itself and see it fail and the message. You can do this by puttinga : and the line number after
the filename. The line number needs to be any line number that’s inside the test. | just chose line 10.

$ mix test test/tuples_test.exs:17

Running this the first time will include a lot of compiler warnings about unused variables. Disregard those for now.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Tuples Page 48 of 74

$ mix test test/tuples_test.exs:17
Excluding tags: [:test]
Including tags: [line: "17"]

1) test day_from_date/1 returns the day number from an erlang date (PatternMatching.TuplesTest)
test/tuples_test.exs:9

Assertion with == failed

code: assert 5 == Tuples.day_from_date({2018, 9, 5})
left: 5

right: nil

stacktrace:

test/tuples_test.exs:10: (test)

Finished in 0.07 seconds
8 tests, 1 failure, 7 excluded

Randomized with seed 164689

The error is nicely laid out for us. In the console it is colored for improved readability.

With a failing test ready that demonstrates the correct working behavior, it’s your turn to write the code in the file being tested. In
your editor, open lib/pattern_matching/tuples.ex . Find the function we want to write the implementation for.

defmodule PatternMatching.Tuples do
@moduledoc """

Fix or complete the code to make the tests pass.
mmnn

def day_from_date(erl_date) do
end

[...]

end

Modify the argument to make it a Pattern Match and modify the body to the return the desired value. After making a change to the
file, re-run the same test (hit the up arrow in the console to repeat the previous command). Does your test pass? If not, correct
any mistakes and try again. If you have a passing test or you are totally stuck, check out the solution below.

Showing Solution
The function argument is a tuple. We only care about the day variable so the others are placeholders with a leading _ . The
function body returns the variable we care about, day .

def day_from_date({_year, _month, day}) do
day
end

Exercise #2 - Tuples.has_three_elements?/1

The test we want to focus on is in test/tuples_test.exs . If the line numbers haven’t changed, execute the failing test using:
mix test test/tuples_test.exs:25

Using a text editor, make changes to the function has_three_elements? in the file lib/pattern_matching/tuples.ex .

Make the test pass by using pattern matching in the function declaration. Create a second function clause that handles when it
doesn’t match the tuple. Keep re-running the mix test command for that specific test as you test your solutions.

Showing Solution
Two function clauses are used. One to match when the argument is a three element tuple and the other for anything else.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Tuples Page 49 of 74

def has_three_elements?({_, _, _}) do
true
end

def has_three_elements?(_tuple) do
false
end

Exercise #3 - Tuples.major_us_holiday/1

The test we want to focus on is in test/tuples_test.exs .

mix test test/tuples_test.exs:40

Using a text editor, make changes to the function major_us_holiday in the file lib/pattern_matching/tuples.ex .

Make the test pass by using pattern matching in the function declaration. Create multiple function clauses to handle the different
cases.

For this example, we only care about 3 specific holiday months.

If the month is 12, return “Christmas”.

If the month is 7, return “4th of July”

If the month is 1, return “New Years”

For any other month value, return the string “Uh...”

Showing Solution

def major_us_holiday({_, 12, _}), do: "Christmas"
def major_us_holiday({_, 7, _}), do: "4th of July"
def major_us_holiday({_, 1, _}), do: "New Years"

def major_us_holiday(_erl_date) do

"Uh..."
end

Note that the order of the 3 functions matching the number is not important. Any order is valid. However, the “Uh..."” response
does need to be the last one as it will match with any value given it.

Exercise #5 - Tuples.greet_user/1

The first test to focus on is the “happy path” or “success” version of the function. The tests for this function are broken out into
two tests. The success and failure cases.

mix test test/tuples_test.exs:52

The function should be altered to return the a greeting with the user’'s name when it is passed in using an {:ok, username} tuple.
A specific error text should be returned if given an {:error, reason} tuple.

Once you have the success version passing, write the failure handling version. That test is:
mix test test/tuples_test.exs:56

Showing Solution

def greet_user({:ok, name}), do: "Hello #{name}!"
def greet_user({:error, _reason}), do: "Cannot greet"

Exercise #6 - Tuples.add_to_result/1

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Maps Page 50 of 74

This one is also broken out into two different test cases. The first is the “success” or “happy path” version. The second test is how
it handles data it can’t operate on. Here are the two tests to focus on.

mix test test/tuples_test.exs:65
mix test test/tuples_test.exs:70

This represents a common pattern in Elixir. Receiving an :ok tuple, operating on the data and returning a new :ok tuple with the
modified result.

Iterate editing the file and running tests until they both pass.

Showing Solution

def add_to_result({:ok, result}), do: {:ok, result + 10}
def add_to_result(error), do: error

All Tests Passing!

All the tests in this file should be passing now! Run the tests for the full file (not any specific line number). You are ready to move
on.

$ mix test test/tuples_test.exs

Finished in 0.07 seconds
8 tests, 0 failures

Randomized with seed 57431

Pattern Matching a Function Body: Maps

Maps are your go-to key-value collections. You are likely to use them a lot. When building a web application, the request data
submitted by a client is represented as a map with string keys. Before we jump into practicing how we pattern match maps in
functions, this is a good time to talk about a code pattern you will see in Elixir.

In Pieces and Whole

There is a common code pattern we use in Elixir that is worth exploring here. Let’s look at a code example and talk about it.

params = %{"name" => "John", "email" => "john@example.com"}

defmodule Testing do
def do_work(%{"email" => email} = params) do
I0.1inspect email
I0.inspect params
"Sent an email to #{email} addressed to #{params["name"]}"
end
end

Testing.do_work(params)

#=> "john@example.com"

#=> %{"email" => "john@example.com", "name" => "John"}
#=> "Sent an email to john@example.com addressed to John"

In this code, we have a string-key map called params similar to what you’'d get when handling a web request. The do_work
function takes the params in and does a pattern match on some of the data. It looks like this: do_work(%{"email" => email} =
params) . What's special here is that we are pattern matching for some data we care about and still binding everything passed in
as params .

This is a common code pattern. You can use this same approach everywhere you pattern match. It works in case statements and
even in a straight forward match expression. Check this out:

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Maps Page 51 of 74

%{"email" => email} = params = %{"name" => "John", "email" => "john@example.com"}

email

#=> "john@example.com"

params

#=> %{"email" => "john@example.com", "name" => "John"}

Yes, this may look strange, but when you break it down you can see what’s happening. The match operator performs a Pattern
Match of the left and right sides. When we say params by itself, we haven’t defined a type or a data shape so it just gets bound.

This is effectively what we're doing with the map match in the function. We still bind everything to the variable params but we
also define the pattern (data type and shape) which also pulls out the data we care most about.

This can be very helpful like in my hypothetical function below. | want to Pattern Match and access a portion of the data when it is
passed in, but | still want the full customer data because | pass it on to another function called notify_customer .

defmodule Billing do
def apply_charge(%{id: customer_id} = customer, charge) do
record_charge(customer_id, charge)
notify_customer (customer, charge)
end
end

Still Naming for Clarity

You've seen how we can name an argument for developer clarity and documentation reasons using the underscore prefix like
_customer . We can do that when matching map arguments. When | don’t need the full data structure, it still adds value to name it
for developer clarity and expressing the intent of the function.

defmodule Testing do
def do_work(%{"email" => email} = _customer_params) do
use ‘email’
end
end

Having the argument named _customer_params conveys meaning for what the developer was expecting to be passed in. That
meaning may not be clear from just looking at a function declaration that says, “ do_work(%{"email" => email}) do “. A map with an
email string key could be for a user, customer, a login, or something else.

Be kind to your future self an any other developers that work on your code base. Name your variables even when the code doesn’t
need it.

Binding to a Nested Map

Maps are the go-to data structure for key-value data. They also elegantly handle nested data. When pattern matching, it is
important to understand that you can also easily bind to a nested map. This can be very handy when working with web requests,
and actually gets used frequently.

An example will help demonstrate this. First, we need some nested data to pattern match against. Remember, in this example we
are focusing on the function declaration and the pattern match it uses.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Maps Page 52 of 74

params = %{
"customer" => %{
"id" => 123,
"name" => "Willy Wonka Chocolates",
"bonuses" => %{
"employees" => %{
"Oompa 1" => 1_000,
"Oompa 2" => 2_000,
"Hillary" => 1_500,
"Oompa 3" => 500
},
"total" => 5_000

defmodule NestedBinding do

def award_bonuses(%{"customer" => %{"bonuses" => %{"total" => bonus_total} = bonuses}} = _params) do
I0.1inspect bonus_total, label: "TOTAL TO VALIDATE"
I0.inspect bonuses, label: "BONUSES"
TODO: validate intended total and employee amounts
:ok
end
end

NestedBinding.award_bonuses(params)
#=> TOTAL TO VALIDATE: 5000

#=> BONUSES: %{

#=> "employees" => %{

#=> "Hillary" => 1500,
#=> "Oompa 1" => 1000,
#=> "Oompa 2" => 2000,
#=> "Oompa 3" => 500
#=> 1,

#=> "total" => 5000

#=> }

#=> ok

The pattern is where we are focusing right now:
%{"customer" => %{"bonuses" => %{"total" => bonus_total} = bonuses}} = _params
Notice that we can bind to a deeply nested map to get the bonus_total and bind a variable to the full bonuses map at the same

time!

The ability to bind to a nested piece of data works on a// data types. However, it is most helpful when working with maps, primarily
because maps tend to have nested data more than other data types.

Practice Exercises

The following exercises continue using the Pattern Matching project. We will continue focusing on making a single test pass at a
time.

The tests we are focusing on are in test/maps_test.exs . Running the following command will execute a//the tests in this file.
Running all the tests now will show they all fail.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Maps Page 53 of 74

$ mix test test/maps_test.exs

Finished in 0.05 seconds
9 tests, 9 failures

Randomized with seed 958439

You should be more comfortable with the TDD (Test Driven Development) approach here. Let’s get started with an easy warm-up.

Exercise #1 - Maps.return_name/1

The test to focus on is in test/maps_test.exs . Given a map with a :name key, return the value from the function.

mix test test/maps_test.exs:20

Showing Solution

def return_name(%{name: name}) do
name
end

Exercise #2 - Maps.has_sides?/1

There are two tests to focus on. The first is the “success” path and the second is handing non-matching data. This is focusing on
validating the shape of the data with less focus on the values and binding variables.

Refer to the tests for examples of the input data.

mix test test/maps_test.exs:30
mix test test/maps_test.exs:40

Showing Solution

def has_sides?(%{sides: _num}), do: true
def has_sides?(_value), do: false

Exercise #3 - Maps.net_change/l

The test we want to focus on is in test/maps_test.exs . It is under “net_change/1” and the test is “subtracts beginning balance from
ending balance”. If you haven’t modified the file causing the line numbers to change, then using the following mix command will
work.

There are two tests for this function. This function takes a map, performs a calculation and returns the result in an {:ok, result}
tuple. The result is the difference of :ending_balance and :initial_balance .

mix test test/maps_test.exs:50
mix test test/maps_test.exs:60

Iterate on the code changes to make the tests pass. Use pattern matching in the function declaration.

Showing Solution

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Maps Page 54 of 74

def net_change(%{initial_balance: 1initial, ending_balance: ending}) do
{:0k, ending - initial}
end

def net_change(_value) do
{:error, "Missing balance information"}
end

Exercise #4 - Maps.classify response/l

This exercise is one of my favorites! This is based on several real-world experiences of mine. At some point, you will have a project
that integrates with some other external service. That external service may return XML or JSON but not in any standardized, clean
way. You are left dealing with whatever they give you. Even APIs returning JSON can be messy and not follow good REST practices.
This exercise is inspired by those experiences. You don’t get to control the data you have to react to. Your goal is to get the
meaning and result you need from the given data.

When | was learning Elixir and encountered a situation like this, | created my first-pass solution. It was a traditional imperative
step-by-step solution. Looking at my working solution, | wasn’t satisfied. | thought, “That doesn’t feel very Elixir-like yet”. | went
back, looked at more Elixir code, tried again. My second attempt still didn't feel quite “right” yet. After my third attempt, | ended
up with a solution that “felt right”. It was elegant and | was elated!

| stress this point because you need to know that it's okay to take multiple passes at a solution.

The test defines 4 sample responses from an external service. We want to be able to classify the response and identify when a
request was successful and extract the desired value. There are 3 examples of how the request might fail. We want to be able to
tell them apart as they will influence how the application responds.

The response data we need to look at is spread out throughout a nested map. Pattern matching lets you create an elegant
solution.

There are 4 tests for this function. One is the happy-path solution and the other 3 are for handling the different error conditions we
expect.

mix test test/maps_test.exs:86
mix test test/maps_test.exs:92
mix test test/maps_test.exs:96
mix test test/maps_test.exs:102

Matching Success

First, let’s detect when it succeeds. Our function should return that it succeeded with an {:ok, result} tuple which include the
extracted token. The test case include a comment that explains what about the data defines a success. The setup for the test
cases includes sample response data.

mix test test/maps_test.exs:88

Make the test pass by using pattern matching in the function declaration.
Showing Solution
def classify_response(%{"success" => true, "token" => token} = _response) do

{:0k, token}
end

Matching When Invalid

Next, let’s add to our existing solution by moving on to the next test. Again, the test case includes a comment that defines when
the response is “invalid”.

mix test test/maps_test.exs:92

Showing Solution

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Maps Page 55 of 74

def classify_response(%{"success" => false, "messages" => %{"general" => %{"result_code" => -1}}} =
_response) do
{:error, :invalid}
end

Matching When Retry

Continue building on your work to add support for detecting when we should “retry” our request with the server. Again, the test
case includes a comment that defines when the response tells us to “retry”.

mix test test/maps_test.exs:96

Showing Solution
def classify_response(%{"success" => false, "messages" => %{"general" => %{"result_code" => 3}}} =
_response) do

{:error, :retry}
end

Matching When Account is Frozen

Conclude this exercise by building on your work to add support for detecting when a request failed because an account is
“frozen”. Again, the test case includes a comment that defines when we can tell an account is “frozen”.

mix test test/maps_test.exs:102

Showing Solution

def classify_response(%{"success" => false, "account" => %{"status_code" => "3001"}} = _response) do
{:error, :frozen}
end
Summary

All the tests for classify_response/l1 should be passing!

$ mix test test/maps_test.exs
Compiling 1 file (.ex)

Finished in 0.05 seconds
9 tests, 0 failures

Randomized with seed 955953

Take a look at the full solution (hidden below) and think how the same solution would look if done imperatively using nested if
statements! | love pattern matching! It makes the code declarative and clear. | feel like I'm a better programmer because of it.

Showing Full Solution

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Struct Page 56 of 74

def classify_response(%{"success" => true, "token" => token} = _response) do
{:0k, token}
end
def classify_response(%{"success" => false, "messages" => %{"general" => %{"result_code" => -1}}} =
_response) do
{:error, :invalid}
end
def classify_response(%{"success" => false, "messages" => %{"general" => %{"result_code" => 3}}} =
_response) do
{:error, :retry}

end

def classify_response(%{"success" => false, "account" => %{"status_code" => "3001"}} = _response) do
{:error, :frozen}

end

When code is written this way, it is “declarative”. The code just “declares” the shape of the data it cares about. It basically says,
“When the data matches this specific shape, it means we retry.”

When the same problem is solved without pattern matching (like when using nested if statements), reading it becomes a exercise
of mentally parsing code to figure out what it’s doing. Instead of applying a single pattern definition for a match statement, it is
step-by-step poking the data to “feel” what the shape is. “Does it have this key? Yes? So then does it have this next key?”

As you become more comfortable writing code this way, you won’t want to go back to the old way. Code becomes elegant. Your
solutions become a declarative expression of what the data means. It's easier to understand, easier to refactor, and more fun to
write!

Pattern Matching a Function Body: Struct

Matching with a struct is just like matching with a map. The main differences with structs are:

e the keys are al/ways atoms
e the compiler tells us if we get a key wrong
e the struct type gives us another thing to match against

In fact, you can write the pattern matching solutions to the tests using only maps! With the test code available, this is a good
chance to explore and understand how this works and why there is value in using structs when you can.

The project defines two structs for us to play with here. Feel free to check them out.

e lib/pattern_matching/customer.ex
e lib/pattern_matching/user.ex

You can also see a description of the structs in IEx. Start the IEx using iex -S mix to load the project into the IEx session. Using the
IEx helper t() , it can describe a type for us.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Struct

$ iex -S mix
Erlang/OTP 21 [erts-10.0.6] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]

Interactive Elixir (1.8.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> t PatternMatching.Customer
@type t() :: %PatternMatching.Customer{

active: boolean(),

contact_name: nil | String.t(),

contact_number: nil | String.t(),

location: nil | String.t(),

name: String.t(),

orders: list()

iex(2)> t PatternMatching.User
@type t() :: %PatternMatching.User{
active: boolean(),
admin: boolean(),
age: nil | 1integer(),
gender: nil | :male | :female,
hair: nil | String.t(),
name: String.t(),
points: integer()

There are some similarities between the Customer and User structs. They both have :name and :active keys. All the other fields
are different.

Compile Time Checks

A benefit of using struct types in Elixir is that you get compile-time checks that the keys are correct.

When we use IEx, the Elixir commands we enter are interpreted at runtime, they aren’t compiled at build time. We still get errors
for incorrect structs, but they look different. Let’s see an example of both:

Example: IEx - Interpreted. Started using iex -S mix .

alias PatternMatching.User

user = %User{car: "Toyota"}

#=> *xx (KeyError) key :car not found

#=> (pattern_matching) expanding struct: PatternMatching.User.__struct__/1
#=> jex:2: (file)

This is a runtime KeyError trying to use a key that doesn’t exist on the struct.
Example: Compiled. Assumes you modify the code to be invalid and then try to start the project, which compiles it in the process.

$ dex -S mix
Erlang/OTP 21 [erts-10.0.6] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]

Compiling 1 file (.ex)

== Compilation error in file lib/pattern_matching/structs.ex ==
*% (CompileError) lib/pattern_matching/structs.ex:9: unknown key :car for struct PatternMatching.User
lib/pattern_matching/structs.ex:9: (module)

This is helpful in catching problems ranging from a simple typo to changing a struct definition where a key was renamed or
removed.

However, if | perform the match as a map instead of the struct, | have no protections or guarantees. This alone is a significant
benefit. It’s the difference of including the struct name or not.

ThinkingElixir.com - Pattern Matching Reference

Page 57 of 74

(C) 2019 Mark Ericksen

Pattern Matching a Function Body: Struct Page 58 of 74

This version is compile-time checked for Customer keys.
def do_work(%Customer{name: name}) do

work
end

This version cannot be checked.
def do_work(%{name: name}) do

work
end

Guarantee it is the Struct

When a struct is part of the Pattern Match, it is a guarantee that the data coming in /s that struct. Not just a map with similar keys,
but it /s that struct. All the code inside that function clause can be written confidently knowing it can’t be something else with a
similar structure.

It is totally valid to define a function clause that matches the struct just to have that assurance and protection. Here’s an example:

def do_work(%Customer{} = customer) do
work
end

Inside this function clause | am guaranteed to have a Customer struct. This is opposed to a similar function declaration without it.

def do_work(customer) do
work
end

This function calls the argument customer but there is no guarantee it is a customer. The code would likely be written with the
assumption it is a Customer struct but it implicitly depends on all callers to always only pass in a customer struct. When this
function is passed something other than a customer, it will likely result in runtime errors.

Protects from Misspellings

Explicitly using a struct in a Pattern Match helps protect against misspelled keys. In the following example, | don’t use the struct
type but instead use a map. I've accidentally misspelled name as nam.

def do_work(%{nam: name} = customer) do
Will never match a %Customer{}!
end

Calling this function and passing in a Customer struct won't error, it will just never match! I've described a pattern that cannot
match a Customer. When the Customer struct type is included, | get a compilation error for the invalid key.

Keep in mind that it is completely acceptable to /ntentionally use a map to match a struct. In this way my code can be somewhat
polymorphic. | match on attributes of the data that multiple types can share. However, if I'm expecting the data to be Customer
type, then it is preferable to explicitly declare that.

Practice Exercises

The following exercises continue using the Pattern Matching project. We will continue focusing on making a single test pass at a
time.

The tests we are focusing on are in test/structs_test.exs . Running the following command will execute a//the tests in this file.
Running all the tests now will show they all fail.

Please review the solutions below even if you feel confident with your answer. You may find additional insight in the explanations.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Struct Page 59 of 74

$ mix test test/structs_test.exs

Finished in 0.05 seconds
9 tests, 9 failures

Randomized with seed 958439

Exercise #1 - Structs.get name/1

In this exercise you write the function get_name/1 that takes both a User and Customer struct.

There are 2 tests for this function. One is the happy-path solution and the other handles when some other data type is given.

mix test test/structs_test.exs:25
mix test test/structs_test.exs:30

Make the tests pass by using pattern matching in the function declaration.

Showing Solution
You can treat the data more generically as just a map. This lets you treat it somewhat polymorphically.

def get_name(%{name: name}), do: {:ok, name}
def get_name(_other), do: {:error, "Doesn't have a name"}

Exercise #2 - Structs.create _greeting/1

In this exercise you write the function create_greeting/1 that handles receiving a User and Customer struct differently.

There are 2 tests for this function. One is the happy-path solution that handles creating a customized greeting for a User or
Customer struct. The other handles when the User or Customer being greeted is inactive.

mix test test/structs_test.exs:38
mix test test/structs_test.exs:45

Make the tests pass by using pattern matching in the function declaration.

Showing Solution
The first Pattern Match handles when the subject to be greeted is inactive. It matches both a User and a Customer . The other two
function clauses match the struct type to return an appropriate and customized greeting.

def create_greeting(%{active: false}), do: {:error, "Recipient 1is inactive"}
def create_greeting(%Customer{name: name}), do: {:ok, "Howdy customer #{name}!"}
def create_greeting(%User{name: name}), do: {:ok, "Greetings user #{name}!"}

Exercise #3 - Structs.deactivate _user/1

In this exercise you write the function deactivate_user/1 that handles receiving a User struct, modifying it and returning the
modified struct.

There are 2 tests for this function. One is the happy-path solution that handles creating an updated User struct. The other handles
when something other than a User is passed in.

mix test test/structs_test.exs:55
mix test test/structs_test.exs:60

Make the tests pass by using pattern matching in the function declaration.

Showing Solution

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Lists Page 60 of 74

The first function clause matches on a User struct. It returns a new User struct with the value changed. The second function
clause matches when anything other than a User struct is passed in and returns an error.

def deactivate_user(%User{} = user) do
{:o0k, Map.put(user, :active, false)}
{:0k, Map.merge(user, %{active: false})}
{:0k, %User{user | active: falsel}}

end

def deactivate_user(_other), do: {:error, "Not a User"}

There are multiple ways this function can be written to make the tests pass. Other possible solutions are included as comments.
The solution used here has the benefit of using the struct’s type to perform the update. Doing this gives compile-time checks on
the keys being used. The other options will not. Play around with it get comfortable with the way this works.

Pattern Matching a Function Body: Lists

Pattern matching a list with function clauses is the foundation of recursively processing a list of data. We aren’t going to go into
recursion here, but instead focus on getting comfortable with the different ways we can Pattern Match a list with function clauses.

Practice Exercises

The following exercises continue using the Pattern Matching project. We will continue focusing on making a single test pass at a
time.

The tests we are focusing on are in test/lists_test.exs . Running the following command will execute a//the tests in this file. Running
all the tests now will show they all fail.

$ mix test test/lists_test.exs

Finished in 0.1 seconds
7 tests, 7 failures

Randomized with seed 423605

Exercise #1 - Lists.is_empty?/1

In Elixir, a function can have the question mark character ? as part of the name. By convention, this is used to convey that it
returns a boolean result. This function works this way as well. If given an empty list, true is returned. For anything else it returns
false .

mix test test/lists_test.exs:25

Showing Solution

def dis_empty?([]), do: true
def dis_empty?(_list), do: false

Exercise #2 - Lists.has_1 item?/1

This function also returns a boolean result because of the ? in the name. If given a list with exactly 1 item, return true . For
anything else it returns false .

mix test test/lists_test.exs:35

Showing Solution

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Lists Page 61 of 74

def has_1_ditem?([_]), do: true
def has_1_item?(_list), do: false

Exercise #3 - Lists.at _least one?/1

This function also returns a boolean result because of the ? in the name. If the list is not empty, return true . For anything else it
returns false .

mix test test/lists_test.exs:40

Showing Solution

def at_least_one?([_ | _rest]), do: true
def at_least_one?(_list), do: false

Exercise #4 - Lists.return_first_item/1

If the list is not empty, return the first item. If the list is empty, return the atom :error .
mix test test/lists_test.exs:50

Showing Solution

def return_first_item([head | _rest]), do: head
def return_first_item(_list), do: :error

Exercise #5 - Lists.starts with _17/1

If the list starts with a value of 1, then return true . Any other initial value returns false .
mix test test/lists_test.exs:60

Showing Solution

def starts_with_1?([1 | _rest]), do: true
def starts_with_1?(_list), do: false

Exercise #6 - Lists.sum_pair/1

If the list has exactly two items, add them together and return the result. If the list doesn’t have exactly two items, return the atom
.error .

mix test test/lists_test.exs:70

Showing Solution

def sum_pair([first, second]), do: first + second
def sum_pair(_list), do: :error

Exercise #7 - Lists.sum_first 2/1

Given a non-empty list, take the first two elements from it, sum them together and make the summed value be the new head of
the list. If the list doesn’t have at least two items in it, return the original passed in value.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Binaries Page 62 of 74

mix test test/lists_test.exs:80

Showing Solution
This function uses the rest of the list to build the result. All of our other exercises here have ignored the tail of the list. This is part
of how we handle recursion. We pull off the head of the list, perform some work and then recursively pass on the rest of the list.

def sum_first_2([first, second | rest]), do: [first + second | rest]
def sum_first_2(list), do: list

Pattern Matching a Function Body: Binaries

Elixir has the ability to Pattern Match on binaries. If you recall, a string in Elixir is implemented as a binary type. This lets us do
some interesting things. It is also important to understand some of the limitations it has so we can choose the best approach for
our problem.

Matching a String Prefix

A string is a binary type. We can match on the beginning of a string like this:

defmodule StringTests do

def match_greeting("Hello " <> subject), do: {:hello, subject}

def match_greeting("Greetings " <> subject), do: {:greetings, subject}
def match_greeting("Good morning!"), do: {:morning, nil}

def match_greeting(_other), do: :unknown

end

StringTests.match_greeting("Hello Tom")
#=> {:hello, "Tom"}

StringTests.match_greeting("Greetings Jane")
#=> {:greetings, "Jane"}

StringTests.match_greeting("Good morning!")
#=> {:morning, nil}

StringTests.match_greeting("Buenos dias")
#=> :tunknown

This works when we know the exact prefix we are looking for. It is case sensitive and everything after the match gets bound to the
variable. This can be useful when working with a text-based protocol over TCP or UDP. For example, a command strings like the
following can be matched and parsed quickly.

e "GET /url/fendpoint"
e "SAY Hey guys! How's it going?"
e "POKE friend_user_name"

Matching the Middle or End?

You may think about having the pattern match for the end of the string. Let’s try that:

greeting <> "Tom" = "Hello Tom"
#=> ** (ArgumentError) the left argument of <> operator inside a match should be always a literal binary
as its size can't be verified, got: greeting

As you can see, matching at the end isn’t allowed. For a binary pattern match to work, it must know the size of the pieces being
matched, at least in the front. It can match on a known sized beginning and catch the rest of an unknown size at the end.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching a Function Body: Binaries Page 63 of 74

Matching a Fixed Size String

Binary pattern matching works well for matching and parsing a fixed size string where the structure is already known. Imagine that
you have some date values stored in the format "YYYYMMDD" . The values are stored as a string. You want to display the date as
"MM/DD/YYYY" . Binary pattern matching works great here!

Let’s look at this example and then we'll break it down.

defmodule Formatting do

def date(<< year::binary-size(4), month::binary-size(2), day::binary-size(2) >>) do
"#{month}/#{day}/#{year}"
end

end

Formatting.date("20181230")
#=> "12/30/2018"

The pattern match uses the << >> characters to indicate it is a binary type. In this example we define a pattern that breaks the
data into 3 chunks using the variable names year, month , and day . With each specifying how large it is.

Defining a pattern like this lets the BEAM perform fast matches. It also lets us “declare” the pattern we want which allows us to
elegantly and quickly parse the data. It's just so cool!

Practice Exercises

The following exercises continue using the Pattern Matching project. We continue focusing on making a single test pass at a time.

The tests we are focusing on are in test/binaries_test.exs . Running the following command will execute a//the tests in this file.
Running all the tests now will show they all fail.

Remember to focus on the test file as a specification for what the code should do and what the sample inputs look like.

$ mix test test/binaries_test.exs

Finished in 0.06 seconds
7 tests, 7 failures

Randomized with seed 905586

Exercise #1 - Binary.identify command/1

In this exercise you write the function identify_command/l that takes a string where the start of the text contains a text-based
command. This sort of thing actually exists like with the Hypertext Transfer Protocol v1.1 (HTTP 1.1) specification. This is, of
course, a dramatically simplified usage and test case.

There are 2 tests for this function. One is the ability to correctly identify the commands we care about and the other handles
unsupported commands.

mix test test/binaries_test.exs:18
mix test test/binaries_test.exs:22

Make the tests pass by using pattern matching in the function declaration.

Showing Solution
We only care about the basic categorization of two commands, “SAY” and “WAVE". Anything else is an unsupported command and
results in an error.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://www.ietf.org/rfc/rfc2616.txt

Pattern Matching a Function Body: Binaries Page 64 of 74

def identify_command("SAY " <> text), do: {:say, text}
def didentify_command("WAVE " <> username), do: {:wave, username}
def identify_command(_other), do: {:error, "Unrecognized command"}

Exercise #2 - Binary.format_phone/1

In this exercise you write the function format_phone/l that takes a string containing a US-based phone number with no formatting
or special characters.

There are 2 tests for this function. One is the ability to correctly parse the input value and return a correctly formatted string. The
other handles inputs that don’t match.

mix test test/binaries_test.exs:30
mix test test/binaries_test.exs:35

Make the tests pass by using pattern matching in the function declaration.

Showing Solution
The order doesn’t matter for the two versions that match on different sized phone numbers. The pattern is specific enough to only
match one or the other. Of course the “I match anything” version must be last.

def format_phone(<< area::binary-size(3), three::binary-size(3), four::binary-size(4) >>) do
"(#{area}) #{three}-#{four}"
end

def format_phone(<< three::binary-size(3), four::binary-size(4) >>) do
"#{three}-#{four}"
end

def format_phone(other), do: other

Exercise #3 - Binary.image_type/1

Binary data can be something otherthan a string. Image files often have a standardized header that describes the file. We can use
pattern matching to identify the header data of a file and classify it for us.

In this exercise you write the function image_type/l1 that takes a binary (not a Unicode string), containing some image file
signatures.

There are 3 tests for this function. The first two handle correctly identifying a PNG and JPG files. The other test deals with
unsupported file signatures.

mix test test/binaries_test.exs:48
mix test test/binaries_test.exs:52
mix test test/binaries_test.exs:58

Make the tests pass by using pattern matching in the function declaration.

Showing Solution
The order doesn’t matter for the two versions that match on specific file signatures. The pattern is specific enough to only match
one or the other. Of course the “I match anything” version must be last.

You could also write the binary pattern directly into the function clause. However, using a “Module Attribute” (the @png_signature)
is helpful to define them all in one place and then reference it in a function clause.

Note that Module Attributes are private to a module. They aren’t quite like declaring a constant that can be referenced outside the
module. Also, there are some module attributes with special meaning and compiler direction. However, that topic is outside the
scope of pattern matching.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/Module.html#module-module-attributes

Guard Clauses - Additional Level of Matching Page 65 of 74

@png_signature <<137::size(8), 80::size(8), 78::size(8), 71l::size(8), 13::size(8), 10::size(8),
26::size(8), 10::size(8)>>

@jpg_signature <<255::size(8), 216::size(8)>>

def image_type(<< @png_signature, _rest::binary >>), do: :png
def image_type(<< @jpg_signature, _rest::binary >>), do: :jpg
def dimage_type(_other), do: :unknown

Just to clarify, when you see <<137::size(8)>> , the 137 is an exact integer value for the match. There are a lot of options for how
to define the binary pattern match. Refer to the documentation for details.

Recap

If you are interested in going deeper on binary pattern matching, then there are many great resources and examples online. The
Elixir documentation for defining a bitstring is an excellent reference. There are other great examples of binary pattern matching
by others as well. For example, if you want to learn about matching on PNG headers, you can check out articles like this one.

The important thing to remember with binary pattern matching is where it works well and where it doesn’t. It works great in these
situations:

e matching on a command-style prefix
e matching and unpacking a fixed size string (like for formatting)
e matching and unpacking data from a fixed size binary structure (like a header)

If you want to parse data from the middle or end of a string and there isn’t a predictable location for it, then you probably want a
Regular Expression. Luckily, you have that available in RegEx! You just can’t do that much work in a pattern match function
clause. Remember, when pattern matching, the BEAM is trying to answer the question, “Should | execute this function clause?”

Binary pattern matching is awesome! Just keep this tool in mind and know that this tool is available to you when you have a
suitable problem.

Guard Clauses - Additional Level of Matching

There is an additional level of pattern matching we haven’t touched on yet. A “guard clause” can be used in a function clause to
further define the pattern for a match.

To define a guard clause, we use the keyword when . This is how the function declaration is defined and where the guard clause
goes.

def function_name(argl) when guard_clause do
function body
end

Let’s look at a guard clause that checks if the value passed in is an integer.

defmodule Testing do
def greet_integer(value) when is_integer(value), do: "Hello #{value}"
def greet_integer(_other), do: "meh"

end

Testing.greet_integer(123)
#=> "Hello 123"
Testing.greet_integer ("Jim")
#=> "meh"

You should note that the is_integer(value) guard clause includes the bound variable value from the argument. A guard clause can
be used on any bound variable to help define more about the pattern you want.

A guard clause expression must evaluate to true or false . It is being used to determine if the function should be executed.

Guard Clauses and Pattern Matching

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/Kernel.SpecialForms.html#%253C%253C%253E%253E/1
https://hexdocs.pm/elixir/Kernel.SpecialForms.html#%253C%253C%253E%253E/1
https://zohaib.me/binary-pattern-matching-in-elixir/
https://en.wikipedia.org/wiki/Regular_expression
https://hexdocs.pm/elixir/Regex.html

Guard Clauses - Additional Level of Matching

Remember there are 3 parts to pattern matching:

1. Match the data type
2. Match the data shape
3. Bind variables to values

Guard clauses can help us with parts 1 & 2.

Guard Clauses Can Help Match Type

A guard clause can be used to help match the data’s type. Let’s say | want to write a function called to_string/1 that converts a
value to a string. Thankfully that already exists, but if we wanted to implement something like it, how could we do that with
pattern matching? The problem comes when trying to tell the difference between 1, "1", :one, and 1.0. Without a guard
clause, we can’t define a pattern that says an argument must be an integer, string, atom, float, or some other general data type.

This is where a guard clause can help us. Let’s look at our to_string/1 function we could create.
defmodule Testing do
def to_string(value) when is_binary(value), do: value
def to_string(value) when is_integer(value), do: Integer.to_string(value)
def to_string(value) when is_atom(value), do: Atom.to_string(value)
def to_string(value) when is_float(value), do: Float.to_string(value)

end

Testing.to_string("123")

#=> "123"
Testing.to_string(123)
#=> "123"
Testing.to_string(:one)
#=> "one"
Testing.to_string(12.3)
#=> "12.3"

Notice that the first pattern match tests for is_binary(value) . An Elixir string is a binary, so this test determines there is nothing to
do and returns the value as-is.

The other function clauses test the data type using guard clauses. They use is_integer/1, is_atom/1, and is_float/1 .

The full list of supported types can be found on the Kernel module. They are the functions that start with is_* . Here’s a shorter list
to give you a convenient idea.

is_atom(term)
is_binary(term)
is_boolean(term)
is_float(term)
is_function(term)
is_integer(term)
is_list(term)
is_map(term)
is_nil(term)
is_number(term)
is_tuple(term)

Let’s do some practice exercises to play with guard clauses and matching data types.

Type Practice Exercises

The following exercises continue using the Pattern Matching project. We will continue focusing on making a single test pass at a
time.

The tests we are focusing on are in test/guard_clauses_test.exs . This first set should go pretty fast for you.

Exercise #1 - GuardClauses.return_numbers/1

ThinkingElixir.com - Pattern Matching Reference

Page 66 of 74

(C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/master/Kernel.html#to_string/1
https://hexdocs.pm/elixir/Kernel.html#guards

Guard Clauses - Additional Level of Matching Page 67 of 74

Given a variety of data inputs, return the value when it is a number. If not a number, return the atom :error .
mix test test/guard_clauses_test.exs:20

Showing Solution

def return_numbers(value) when is_number(value), do: value
def return_numbers(_value), do: :error

Exercise #2 - GuardClauses.return_lists/1

In previous exercises, you matched lists where they had various patterns like empty, a single item, at least 1 item, etc. There isn’t
a way to just match “if it is a list” without guard clauses. Now you can!

Given a variety of data inputs, return the value when it is a list. If not a list, return the atom :error .
mix test test/guard_clauses_test.exs:35

Showing Solution

def return_lists(value) when is_list(value), do: value
def return_lists(_value), do: :error

Exercise #3 - GuardClauses.return_any size tuples/1

In previous exercises, matching tuples was very specific to the number of elements in the tuple. Using guard clauses you can now
match if it's a tuple of any size!

Given a variety of data inputs, return the value when it is a tuple. If not a tuple, return the atom :error .
mix test test/guard_clauses_test.exs:45

Showing Solution

def return_any_size_tuples(value) when is_tuple(value), do: value
def return_any_size_tuples(_value), do: :error

Exercise #4 - GuardClauses.return_maps/1

Given a variety of data inputs, return the value when it is a map. If not a map, return the atom :error .

TIP: After you have your solution, make sure to check out the hidden solution as it has an extra tip on how this can be
done!

mix test test/guard_clauses_test.exs:60

Showing Solution
In keeping with the focus on guard clauses, this is that version of the solution.

def return_maps(value) when is_map(value), do: value
def return_maps(_value), do: :error

Alternate Solution: Maps are somewhat special in that you can specify a pattern match like the following. It effectively says,
“It’s a map, but I'm not specifying any keys.”

def return_maps(%{} = value), do: value
def return_maps(_value), do: :error

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Guard Clauses - Additional Level of Matching Page 68 of 74

Both approaches are equally valid!

Exercise #5 - GuardClauses.run_function/1

In Elixir, functions are first-class data types. It is common to pass functions as arguments. Using guard clauses you can check that
an argument is a function.

Given a variety of data inputs, if the argument is a function, execute the function and return the function’s result. If not a function,
return the atom :error .

mix test test/guard_clauses_test.exs:75

TIP: When a function is passed as an argument, it is treated the same as an anonymous function. This example code shows how
to declare an anonymous function with no arguments that returns the value “Hello!” when executed.

Note: to execute an anonymous function, you use a period after the name. You also must include the parenthesis.

greet = fn -> "Hello!" end
greet. ()
#=> "Hello!"

Showing Solution

def run_function(fun) when is_function(fun), do: fun. ()
def run_function(_fun), do: :error

Guard Clauses Can Help Match Shape

Guard clauses can also help match the shape of your data. A guard clause can be very helpful in defining a less specific shape for
a pattern. We've looked at many examples where the pattern defines a shape like matching a specific value.

%User{active: truel} = data

Some operators are safe for guard clauses and let us define a range of values to accept in our pattern. Here’s a shortened list of
some of the most common and helpful operators.

Safe for Guard Clauses

Let’s look at a reduced set of the functions and operators you can use in guard clauses. We already looked at the “is_*” functions
for data types.

For the full list, see the “Guards” section of Kernel Module documentation.

A particularly interesting operator is the in operator. In guard clauses it can only work with ranges (ie 1..5) and lists. Here’s an
example of how this can be used in an interesting way.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/master/Kernel.html#guards

Guard Clauses - Additional Level of Matching Page 69 of 74

defmodule TestingGuard do
def place_order(%{status: status} = order) when status in ["pending", "cart"] do
"Placing order for #{order.customer_id}!"
end
def place_order(_order) do
"Not placing order"
end
end

order_1 = %{status: "pending", total: 100, customer_id: 10}
order_2 = %{status: "cancelled", total: 75, customer_id: 12}

TestingGuard.place_order(order_1)
#=> "Placing order for 10!"
TestingGuard.place_order (order_2)
#=> "Not placing order"

Keep in mind that if you had a list with 100,000 items in it, this could impact your application as the in operator stops when the
first match is found, but if the value /sn’t in the list, it's an exhaustive search to determine that the function doesn’t match. But it
works great with small, bounded sets.

Likewise, the not operator can be very helpful. Expressions like value notin[1, 2, 3] and not is_nil(value) can be very helpful.

7)

@
Thinking Tip: Why only a limited set of functions allowed?

Only a reduced set of operators and functions are allowed to be guard clauses. The BEAM will not
allow a function call in a guard clause that creates side-effects. Just imagine side-effects like
creating a database record, writing to a file, or making an HTTP call to an external service. Those
side-effects would be created while trying to decide /fa function clause should be executed. The
function clause may not match, the function body doesn’t execute, but the side-effect remains!
That would be a horrible buggy system!

To be safe, the BEAM only permits a small set of “known safe” functions to be used in guard
clauses. This limited set of functions can still do a lot of powerful work for you.

S

N

Practice Exercise #6 - GuardClauses.classify user/1

Let’s practice using guard clauses to define a pattern for the shape of the data we want.

Given a variety of User structs, we need to classify the user as a legal adult or a minor. For this example we’ll use the US definition
of age 18 and older to be a legal adult. A User between the ages of 0 and less than 18 is a minor. We should return an error if
given a non-user data type, a nil age or a negative age. The unit tests cover all these scenarios.

mix test test/guard_clauses_test.exs:85
mix test test/guard_clauses_test.exs:92
mix test test/guard_clauses_test.exs:98
mix test test/guard_clauses_test.exs:105
mix test test/guard_clauses_test.exs:110

Make sure to check out the solution below after you have your own working code!

Showing Solution
The age 18 has special a business logic meaning here. Because it is referenced multiple times, it makes sense to declare it once
as a module attribute and use that for the references.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Guard Clauses - Additional Level of Matching Page 70 of 74

@adult_age 18

def classify_user(%User{age: age} = _user) when is_nil(age) do
{:error, "Age missing"}

end

def classify_user(%User{age: age} = _user) when age >= @adult_age do
{:0k, :radult}

end

def classify_user(%User{age: age} = _user) when age >= 0 and age < @adult_age do
{:0k, :minor}

end

def classify_user(%User{age: age} = _user) when age < 0 do
{:error, "Age cannot be negative'"}

end

def classify_user(_user) do
{:error, "Not a user"}
end

Note that the first function clause matches a nil age. The solution here uses a guard clause to do this because that’s the topic
we’re covering here. However, it is more direct and clearer to use a nil value in the pattern match. In that version it would look

like this:
def classify_user(%User{age: nil} = _user) do
{:error, "Age missing"}
end

Custom Guard Clauses

Now is a good time to introduce how you can create your own custom guard clauses. Remember that we are limited in the
functions and operations we can use, but we can combine those things together to create helpful, reusable solutions.

Elixir provides a helper command for creating our own custom guard clauses. The defguard command looks like this:
defguard clause_name(argl) when guard_clause
Let’s return to the GuardClauses.classify_user/1 example and see how we can improve our solution.

@adult_age 18

defguard is_adult?(age) when age >= @adult_age
defguard is_minor?(age) when age >= 0 and age < @adult_age

def classify_user(%User{age: age} = _user) when is_adult?(age) do
{:0k, :radult}

end

def classify_user(%User{age: age} = _user) when is_minor?(age) do
{:0k, :minor}

end

After defining the guard clause, we can use it in a pattern match!

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Guard Clauses - Additional Level of Matching Page 71 of 74

7)

@ Thinking Tip: When to use custom guard clauses?

The value of a custom guard clause is to prevent duplicating business logic in multiple places.

Custom guard clauses help to clarify the intent of a pattern match. The greatest benefit is when
it helps define a pattern that has business logic meaning in your application. Especially when you
would be repeating that logic in multiple places! If you aren’t reusing a guard clause in multiple
places, then it may not be adding value.

S

N

There is also a defguardp command that works similar to defp , creating a private guard clause that is only available in the
defining module.

Import Guard Clauses to Reuse

When you have guard clauses that help define a business logic pattern, you want to be able to reuse them in your application! To
do this, you create a module that defines the guard clauses. In our case, like this:

defmodule PatternMatching.User.Guards do
@defmodule """

Define guard clauses for working with Users.
mmn

@adult_age 18

defguard is_adult?(age) when age >= @adult_age
defguard is_minor?(age) when age >= 0 and age < @adult_age
end

All that's left is to import this module into the modules where we want to use it. Those guard clauses are now available for use in
our functions!

defmodule PatternMatching.GuardClauses do
alias PatternMatching.User
import PatternMatching.User.Guards

def classify_user(%User{age: age} = _user) when is_adult?(age) do
{:0k, :radult}
end
def classify_user(%User{age: age} = _user) when is_minor?(age) do
{:0k, :minor}
end
end

Guard Clauses can Match Other Arguments

One powerful aspect of guard clauses is that we can match a piece of data from one argument to another argument’s data.
Without guard clauses, we couldn’t do this in a function clause pattern match. Let’s look at an example to help visualize what we
are talking about.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

Pattern Matching Summary Page 72 of 74

defmodule Testing do
def compare_args(argl, arg2) when argl == arg2, do: :equal
def compare_args(argl, arg2) when argl > arg2, do: :greater_than
def compare_args(argl, arg2) when argl < arg2, do: :less_than
end

Testing.compare_args(1l, 1)
#=> tequal
Testing.compare_args(2, 1)
#=> :greater_than
Testing.compare_args (1, 2)
#=> :less_than

Any variable we bind in one argument can be compared to any value bound for another argument! Without guard clauses, this
would be done inside a function using an if statement. With guard clauses, we are able to keep the filtering of the data on the
boundary of the function clause. This lets us keep the function body straight-forward and clear.

Practice Exercise #7 - GuardClauses.award_child_points/3

In this final exercise, we will conditionally award a user additional points if they are within a desired age range. If the user matches
the age pattern, increase their points and return an updated user struct. If the user does not match the pattern, return the user

unmodified.

There are two tests to focus on.

mix test test/guard_clauses_test.exs:125
mix test test/guard_clauses_test.exs:130

Showing Solution
The max_age is passed in and is compared to the passed in user’s age.

def award_child_points(%User{age: user_age} = user, max_age, points) when user_age <= max_age do
%User{user | points: user.points + points}
end

def award_child_points(user, _max_age, _points) do
user
end

Recap

Guard clauses add another powerful layer to pattern matching in Elixir. We covered a lot here, it’s worth taking a moment to
mention some of the highlights to keep in mind:

e Guard clauses further define a pattern for data type and shape.
e Custom guard clauses make reusable business patterns easy to use.
e Guard clauses allow us to define a pattern that combines multiple function arguments.

Additional Resources on Guard Clauses

You can find more resources on guard clauses here:

e https://hexdocs.pm/elixir/master/guards.html - Higher-level documentation on how guards work, what can be used in them,

how they fail, etc.

e https://hexdocs.pm/elixir/master/Kernel.html#guards - Kernel module documentation on guard clauses. This is the list of
functions and operations defined on the Kernel Module that are safe to be used in guard clauses.

e https://hexdocs.pm/elixir/Kernel.html?#defguard/1 - Documentation on defguard command

Pattern Matching Summary

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://hexdocs.pm/elixir/master/guards.html
https://hexdocs.pm/elixir/master/Kernel.html#guards
https://hexdocs.pm/elixir/Kernel.html?#defguard/1

Pattern Matching Summary Page 73 of 74

Congratulations on completing the Pattern Matching Course!

Putting it all together

Pattern matching is everywhere in Elixir. If thinking in patterns is a new experience for you, then out of habit you will still be
writing code that is more imperative. That’s okay! As you spend more time in Elixir, you will see more opportunities to refactor
your code to make it more declarative and use patterns more effectively.

A good exercise is to look at some code you just wrote and ask, “Does this feellike Elixir code?” If not, look at some examples of a
good use of pattern matching and try a small refactor. Ask yourself again, “Does this fee/like Elixir code?” After just a few
iterations it can really begin to change! What really needs to change is not the code, it's the way you think about your code.
Pattern matching is a new tool you have to solve problems. You need to start thinking about your application as data, functions,
and the patterns in your data.

Having gone through the exercises and practice code, you have a good foundation to build on. Let’s review some of the things we
covered.

The pattern goes on the left of the Match Operator. The data goes on the right.

A Pattern Match can match the data’s type, shape, and bind variables to values all in a single statement.
A Match Error occurs when no match could be made.

Pattern matching goes from top to bottom. If the first pattern doesn’t match, the next pattern is checked and so on.
The first pattern to match wins and takes the data.

Make your top patterns more specific.

The “ ~ " Pin Operator lets you reference the value of a variable in a pattern.

The “ _ " lets you define shape without binding to the value.

A nested if statement is an anti-pattern

Lists are “linked lists” and it is cheaper to add to the front than it is to add to the end like an array.

Lists are recursive, a list is made up of a “head” element and a tail that is itself a list.

Strings can be pattern matched.

Guard clauses are another level of a pattern match. They can be also be used to match type and shape.
Guard clauses allow you to compare bound variables to each other in a pattern match.

Pattern matching is most effective when you think differently about your code.

Pattern matching is awesome!

Pattern matching is an incredible tool! As with every new tool, there is a learning curve. By completing this coverage of pattern
matching, you have dramatically sped up your learning! You have hands-on experience solving problems using this new tool. More
important than learning the mechanics of pattern matching, you have learned how to think about your data and the patterns in
your application!

You are on excellent footing now for continued building and growth. You are better able to read and understand Elixir code
because pattern matching truly is everywhere in Elixir.

| love Elixir because | feel I'm a better developer when I’'m working in it. Tools like pattern matching that we covered here feel like
a super power! When | work in other languages where these tools don’t exist, | really miss it. The more you work with Elixir and
pattern matching, the more natural it becomes.

You are ready for the next step and | can’t wait to share it with you!

Download reference resource

Now that you have completed the course, as a special “thank you”, | want you to have a ready, portable, handy reference as a
resource of everything we covered together. This is a PDF download of the course information. It is indexed and searchable so you
can easily jump around and find something you want to refer back to.

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

The Next Step Page 74 of 74

The Next Step

flow

After learning how pattern matching works in Elixir, it's time to see how pattern matching changes the way we control the flow of
our application code. The Code Flow course covers how Pattern Matching, Immutability and Functional Programming
impacts the foundation of programming:

e Branching logic
e Looping
e Error handling

There are new control flow patterns to learn, new language features available, and new ways to do familiar things.

More than learning whatthe new things are and how to use them, you also learn when to use a technique and why to choose one
approach over another. You get hands-on experience with the concepts using a downloadable project with practice exercises.

You gain experience, understanding, and confidence in your ability to make meaningful contributions to a project and doing it the
“Elixir way”. Even more than now, you will be “Thinking Elixir".

See the available courses and keep your momentum
going!

ThinkingElixir.com - Pattern Matching Reference (C) 2019 Mark Ericksen

https://thinkingelixir.com/available-courses/code-flow/
https://thinkingelixir.com/available-courses/code-flow/
https://thinkingelixir.com/available-courses/

	Pattern Matching Course
	ThinkingElixir.com

	Install Elixir
	Need a code editor?

	Elixir’s Interactive Shell
	We Learn By Doing
	Play Time!
	Line Continuations
	Auto-Complete in IEx
	Help in IEx
	Command History
	Ready, Set, Go!

	Basic Types Overview
	Atom
	Preventing Denial-of-Service

	Boolean
	Nil
	Integer
	Float
	Scientific Notation

	String
	Concatenation
	Interpolation
	Strings are Binary

	Charlist
	Modules to Manipulate

	List
	How it works
	See for yourself!
	Should I only ever add to the front?

	List Contents
	Experiment with Lists

	Tuple
	Map
	String-Key Version
	Atom-Key Version
	Other Key Types
	Nested Values
	Accessing Values in a Map
	Map.get/3
	Access Behaviour
	Kernel.get_in/2

	Changing an Immutable Map
	Map.put/3
	Kernel.put_in/3

	Special Update Syntax
	More Resources

	Introducing Modules and Functions
	Modules
	Functions in IEx
	Running an Elixir Script
	Creating a Simple Mix Project

	Function “Arity”
	Function Return Values
	No Early Return?
	What if I don’t want to return anything?

	Private Functions
	Passing a Function by Name
	Default Arguments
	Multiple Functions are Created

	Module Names are Atoms Too!
	Aliases
	Override the Alias Name

	Introducing the Struct
	Default Values
	Compile Time Checks on Keys
	A Struct is a Map
	No Default Access Behaviour
	There’s Much More to Structs

	Introduction to Pattern Matching
	Meet the Match Operator “=”
	What Happens in a Match?
	The Simplest Match
	Match Without Binding
	Match Error
	The Pin Operator: ^
	Exercises
	Limits to Matching
	Recognizing a Common Error

	Matching Complex Data Types
	Matching to Destructure Data
	Case Statement
	Matching a Map
	Order is Important!
	Using the underscore to define shape
	Named for Developer Clarity
	Tuples and Shape

	Deeper Data Matches
	Nesting Data Types
	Recap

	Practice Matching a Map
	Exercise #1
	Exercise #2
	Exercise #3

	Practice Matching a Tuple
	Exercise #1
	Exercise #2

	Matching a List
	Lists are Freaky Little Snakes
	Tools of the Trade
	Lists Matching
	Multiple Heads?
	Matching an Empty List
	Matching to an Exact Sized List
	Matching Values in the List
	Pin Operator Matching Values

	Recap

	Practice Matching a List
	Exercise #1
	Exercise #2
	Exercise #3

	Practice Project
	Intro to TDD
	Running Tests

	Pattern Matching a Function Body: Intro
	Matching with a Function
	Single Line Function Clauses
	When a Function Doesn’t Match
	Your Flip-the-Lid Clause
	Order Matters!
	Code Without Pattern Matching
	Ready, Set, Go!

	Pattern Matching a Function Body: Tuples
	Exercise #1 – Tuples.day_from_date/1
	Exercise #2 – Tuples.has_three_elements?/1
	Exercise #3 – Tuples.major_us_holiday/1
	Exercise #5 – Tuples.greet_user/1
	Exercise #6 – Tuples.add_to_result/1
	All Tests Passing!

	Pattern Matching a Function Body: Maps
	In Pieces and Whole
	Still Naming for Clarity
	Binding to a Nested Map
	Practice Exercises
	Exercise #1 – Maps.return_name/1
	Exercise #2 – Maps.has_sides?/1
	Exercise #3 – Maps.net_change/1
	Exercise #4 – Maps.classify_response/1
	Matching Success
	Matching When Invalid
	Matching When Retry
	Matching When Account is Frozen

	Summary

	Pattern Matching a Function Body: Struct
	Compile Time Checks
	Guarantee it is the Struct
	Protects from Misspellings
	Practice Exercises
	Exercise #1 – Structs.get_name/1
	Exercise #2 – Structs.create_greeting/1
	Exercise #3 – Structs.deactivate_user/1

	Pattern Matching a Function Body: Lists
	Practice Exercises
	Exercise #1 – Lists.is_empty?/1
	Exercise #2 – Lists.has_1_item?/1
	Exercise #3 – Lists.at_least_one?/1
	Exercise #4 – Lists.return_first_item/1
	Exercise #5 – Lists.starts_with_1?/1
	Exercise #6 – Lists.sum_pair/1
	Exercise #7 – Lists.sum_first_2/1

	Pattern Matching a Function Body: Binaries
	Matching a String Prefix
	Matching the Middle or End?
	Matching a Fixed Size String
	Practice Exercises
	Exercise #1 – Binary.identify_command/1
	Exercise #2 – Binary.format_phone/1
	Exercise #3 – Binary.image_type/1

	Recap

	Guard Clauses – Additional Level of Matching
	Guard Clauses and Pattern Matching
	Guard Clauses Can Help Match Type
	Type Practice Exercises
	Exercise #1 – GuardClauses.return_numbers/1
	Exercise #2 – GuardClauses.return_lists/1
	Exercise #3 – GuardClauses.return_any_size_tuples/1
	Exercise #4 – GuardClauses.return_maps/1
	Exercise #5 – GuardClauses.run_function/1

	Guard Clauses Can Help Match Shape
	Safe for Guard Clauses
	Practice Exercise #6 – GuardClauses.classify_user/1

	Custom Guard Clauses
	Import Guard Clauses to Reuse
	Guard Clauses can Match Other Arguments
	Practice Exercise #7 – GuardClauses.award_child_points/3

	Recap
	Additional Resources on Guard Clauses

	Pattern Matching Summary
	Putting it all together
	Pattern matching is awesome!
	Download reference resource

	The Next Step

